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Summary a

We have investigated many topics in the theory of semiconductors and

alloys including (1) Generalized Brooks' formula and the electron mobility in

SiGe alloys, (2) bond-length distribution, lattice relaxation, bond energies

and mixing enthalpies in alloys, (3) hardness and dislocation energy, (4) SiGe

alloys - band structures and core-exciton binding energy and linewidth, (5)

alloy statistics and microclustering and (6) sensitivity of deep levels to

band structure and potential. The important results are outlined below. The

details are discussed in eight publications enclosed with this report.

Generalized Brooks' Formula and the
Electron Mobility in SiGe Alloy

Although Brooks' formula has been widely used for calculating the alloy-

scattering limited electron mobility, we showed that this formula is only

valid for a direct-gap semiconductor. Besides, there are questions about the

scattering parameter and the effective mass. We generalized the formula for

indirect-gap alloys with multiple bands and applied it to SiGe alloy. Our

results, correlated well with experiments, showed that the electron mobility

drops fast with alloying. The mobility has a dip at 15% Si concentration,

corresponding to a transition from the X(A) band edge to the L edge.

Bond Lengths, Lattice Relaxation, and Mixing Enthalpies
in Semiconductor Alloys

We treated the problem with a model which combines Harrison's bonding

theory with the valence force field model and an elastic continuum. While the

local strain is the main driving force for the bimodal bond-length distribu-

tion in pseudo-binary alloys found in the EXAFS experiment, we found that the
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chemical shifts arising from different bond lengths and polarities of the

constituent bonds can have a significant contribution to the mixing enthalpies.O.

In fact, the sizable negative values of the chemical shifts in the cation-

substitutional alloys, e.g. GaxInl_xAs, may be important for stabilizing the

mixture. We also deduced a simple criterion for separating miscible from

immiscible alloys.

Hardness and Dislocation Energy

We showed that, if the dislocation energy in semiconductor is dominated

by interactions among dislocations, then the hardness is an intrinsic material

property, independent of the size of the indentation and the force applied.

The fact that dislocation energy is proportional to hardness suggests that

alloy hardening is a mechanism for reducing dislocation densities.

SiGe Alloys - Band Structure and Core-Excitons

SiGe binary alloy has regenerated research interests because of its

potential application for high-mobility devices in the strained superlattice

configuration. We have applied our techniques to obtain high-quality band ----

structures for Si and Ge and have performed alloy calculations for SixGel-x.

The results have been checked against optical svectra and used for mobility .'-

study mentioned earlier. Another interesting result is that the alloy band

parameters allowed us to correlate the Si 2p core-exciton binding energy with

the linewidth. The observed minimum in the linewidth near X 0.15 can be

explained as the result of a competetion between intrinsic broadening due to

screening and extrinsic alloy broadening. The most reasonable binding energy

in pure Si was found to be 0.15 eV. This work thus helps resolve the contro-

versy about the unusually large binding energy for the core exciton in Si.
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Statistics and Micro-clustering in Semiconductor Alloys

One of our major efforts was to develop a statistical theory for semi-

conductor alloys which covers three aspects -energetics, statistics and phase

diagram. Because of the smallness of the mixing enthalpies, typically several

k Cal/mol, the present first-principle theory is not accurate enough for this

purpose. We found that a combination of Harrison's model and the valence

force field model provides a simple and adequate method for calculating the

mixing energies. We then generalized Guggenheim's quasi-chemical approxima-

tion to treat the tetrahedral clusters. Our results showed that the arrange-

ment of atoms can have a appreciable deviation from the random distribution.

The distribution is governed by the mixing energy which is the sum of the

strain energy and chemical shifts mentioned earlier. The non-random distribu-

tion will have profound effects on the band structures, mobilities, mechanical

properties and growth mechanisms, and will reflect in many measurable

properties such as phonon spectra, EXAFS, deep level spectra etc. The study

of these effects is one of our current activities.

a."
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Generalized Brooks' formula and the electron mobility in Si, Gel. alloys
Srinivasan Krishnamurthy and A. Sher
SRI International Menlo Park, California 94023

I.. An-Ban Chen
Auburn University. Auburn, Alabama 36830

(Received 19 March 1985; accepted for publication 7 May 1985)

A formula for alloy-scattering-limited electron mobility in semiconductors is obtained for
indirect gap systems with multiple band minima. All the input parameters needed are defined .5-

explicitly. The drift mobility of Si, Ge, _, which has a dip at x - 0.13 and a broader minimum at
x - 0.5 is calculated by adding alloy scattering to other scattering mechanisms and correlates well
with the measured Hall mobility.

The electron and hole mobilities in semiconductors are multiple bands, we show that all the uncertainties identified
determined by the band structure and various scattering above are resolved. Our generalized Brooks' formula will
mechanisms, predominately impurity and phonon scatter- then be applied to Si. Gel _ systems to explain their ob-
ing. For alloys, the mobility is also affected by disorder aris- served mobility."'
ing from aperiodic atomic potentials and atomic positions. Because Brooks' formula has never been derived expli-
Many years ago. Nordheim' and Brooks: obtained an citly in the literature, we rederive it first and then generalize
expression for alloy-scattering-limited electron mobilities in it. Consider the case of a single band with an isotropic effec-
metals and semiconductors, respectively. Brooks' well- tive mass. The dc electronic conductivity based on the linear
known formula reads response theory9 is given by

ei. 1 0, ____)
P_ = (1) M'= ) de, (2)3x(l - xjm *5'2 (WE)2 Vk- J de )

where N, is the number of atoms per unit volume, m* is a where the energy-dependent cie) in the weak alloy scattering

band-edge effective mass. x is the fractional concentration of limit is

one of the species, and 4E is an energy parameter character- = e3 (D rlel. (3)
izing the alloy potential fluctuations. Although this formula
has been widely and, to some extent, successfully used for D (El is the density of states (DOS) per unit volume for both
direct gap materials., -' the identification of the alloy disor- spins, so D 1) = 2Np(i), with N = N-o/2 being the number
der parameter JE remains uncertain. Various suggestions of unit cells per volume Ifor the diamond structure, half the
have previously been made for 4 E, e.g., and band-edge dis- number of atoms N, per unit volume; andp(e) being the DOS
continuity' or band-gap differences.' Any of these simple per unit cell per spin. The mean square velocity v2(,) for
choices is bound to fail when one applies Eq. (1) to more carriers with energy c is given by
complicated indirect gap systems such as Si. Ge, -., alloys. 6[E-e~k)'
where one encounters conduction-band minima transferring v2() = !v(k [ - k (4)
between theX and L points of the Brillouin zone. For exam- k P(e)

-. ple. ifa E is taken to be the difference in corresponding band The scattering lifetime for carriers with energy c. ri), is re-
edges, then one finds that JE - 0. 1 eV for the X (A 4 valley lated to the alloy broadening 4 () by 1,1 = Ai/2,. (c), where
and - 1.2 eV for the L valley. The values that fit the experi- the energyA (cl is the imaginary part ofthe self-energy in the
ment are about half this value for L and - 0.5 eV for X.' The averaged alloy Green's function. For weak scattering 4 (el is
purpose of this letter is to resolve the identity of AE for indi-
rect gap materials. 4()=nx~l -x)(,E)p), (5.

Moreover, there is a problem with the m* that enters whereinarightbindinglTB)description4Eisthedifference
Eq. Il. For direct gap alloys, the band-edge effective mass at in the term values of the constituents. Then the mobility is
r naturally enters Eq. II. For the indirect gap alloys, the / = r/ne with the electron density given by
effective mass is anisotropic and hence an appropriate mass
must be chosen. Previous authors"' have chosen m* to be n = 2f(eowild. 16)

the effective conductiity mass m*. We shall show that dif-
ferent masses enter for different cases. For a nondegenerate semiconductor. fI') is the Boltzmann

e. Thefirst unambiguous assigniment forJEin adirect gap distribution andf(dvx e- ' . Furthermore. for a para-
alloy %4as gien by Hass etal.f To estimate the limiting deec- bolicbanderkl = f:k '2m*.pe) = I2m)"'I/4,-h " then
tron mobility in Hg, Cd, , Te based on a tight-binding TB) all the above equations can be combined to arrive at Eq. 011.
band description, they defined JE to befJE., wheref, is For a real semiconductor alloy in a TB description, the
the fraction in the density of states and JE is the difference alloy scattering can be characterized by two parameters J E,
bet% eei the 5 atomic term values ofthe Hg and Cd atoms. By anJ A Er.the differences in s and p term values between t% o
extending this approach to alloys with indirect gaps and substitutional atoms. Then an effecti~e broadening is gien

16C ApoI PrnyS Lett 47 (2). 15 July 1985 0003-6951,85,1 40'60-03501 00 c 1985 Ame-, can ir'stute of PySyCS 160
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A by TABLE 1. Cakulation parameters.

4 (A p, + 
4

J,,p/p, (7) Parameter S1, Ge, systems

wherep, ,p, are partial density of states IPDOS) and 4, and
4,, are similar to Eq. (5). with p replaced by p, and p., re- mrx) 0 97m,,

spectively. For Hg, ,Cd.Te, the s disorder is predomin- ,I1x 1m,,
e t omO lL ) I 64m.,

ent ' and one can neglect 4E,. Defining p, =f p (and m*(LI 0.082m,,
p, =fp(, one arrives at Et,1;x 08941 - 0042]x 0.1691x:

.4 :z 'xtl - x)(f, Ejyp. Eixi 0.7596 - 1.086.x 0.3306x

f, X) 0.333 + 0.05x t0.s.x.0.31 ,,
Thus as was pointed out by Hass et al.,fAE, plays the role 0.339 - 0.03x i0.3,,x, 1.01

of AE in this special case where .Ep can be neglected. f, (XI 0.632 .- 13x

For an alloy with a single indirect gap minimum, one
has to consider both s andp contributions to the alloy broad-
ening and the masses that enter p and u2. Again. Eqs. (2H6) ly with the concentration, so m and m; are assumed to be .1'
can be combined to yield constant and assigned the values 0.97 and 0.19 for the X

minima and 1.64 and 0.082 for the L minima, respectively. .
p14 The calculated energy gaps for the XWi ) follows the func-

1efh4.Vnl-r,7) tional form E' =a +- bx - cx 2 and for L is given by E '

[3xl .- xim.m*(mfl" 2(kT)12N, (f E f =,4 -Bx C.TAllathe parameters of ourcalculations are- I~m m,(, :k) of~E f A ] listed in Table 1.

To correlate the calculation with the measured mobili-
where mf and m,* are respectively the longitudinal and the ties. we need to have an estimate of scattering rates 1/7,, due
transverse mass at the band edge, and N, is the number of to impurities and phonons. A crude approximation is to as-
equivalent minima. e.g., 6 for Si. The conductivity mass m* sume 1/7 for a given valley to be the same as the appropriate
comes from averaging v: in Eq. (2) and is given by 3(2/mr,* constituent's values and add to it the alloy scattering rate 1/

l/m')- . Equation (8) clearly identifies the masses and I*. Then the average mobility and the mobility from the ith
the energy parameter that enter Brooks' formula. minimum in the alloy are

Next we consider a still more complicated case where
the contribution to the mobility comes from more than one u = ,n,u/ n,,
band. For example. in Si. Ge _ the X and L minima cross
nearx = 0.15. " Thereare now two contributions to the net t/, -  Ct)' + (.U,4) -  (12) i-
conductivity, so a = Xcr,, where i is X or L. The quantities )u-, is given by Eq. (10) and p, are the measured drift mobili-
vs!, D, !, and .V, (C) now take different values for different ties for Si or Ge.' The drift mobility, calculated from Eq.
bands. The structure of r, (ol requires more careful consider- (12), is plotted as a function of alloy concentration x in Fig. 1.
ation. The complication comes from the fact that the effec- For x<0.05 and x>0.20, the energy difference between
tive broadening J is still given by Eq. 17), but p, pp, and p the X and L edges is large enough so there is a negligible $
contain contributions from both the bands. The proper ex- contribution to the mobility from the higher minima. In the
pressions arep = M,p, N' andp,, = Y,f,, N,.p, where i = X Si Get _ system, the s scattering is predominent. Because

orL. a = s orp, and.V' = 6, ,V = 4. The equation forA is " "

d A {,)= (f lrxI I :ll , l/A E . P, (c)N. .()
a /,/\ / .I.

The mobility associated with the ith band is defined as
p, =a,/(n, e), then r 7.

3 I l - x) " ,' 27' if)

fo, if' ."2"P, "') - ii t "-""r
1" I = -d c112 e-"fr de. (1l) i'

)./& r-.

.. , '7 -.PII, dI(I Ir~i .".-.--

I "1 - G s a -2 .. 3:s

Thus. the generalized formula no longer has the explicit
ir and T dependences of the original Brooks' form. However,
all the quantities needed-the masses, the scattering param-
eters J El,. the band gaps. and the fractionsf,, -can be eval-
uated theoretically without resorting to experimentally fit- 0 .0 0 '.

ted paraneters. To demonstrate, we shall apply Eq. (101 to FIG 1 Calculated . t" el.ron drift mobiity and the eM'erimertil

Si, Ge, The band quantities arc obtained from our CPA Hall rnohlit, daohed inc from Refs 6 and 8 are plotted a a functin of
calculation." We found that the effecti%.e masses vary weak- alloy concentranon.

161 Appl Phys .ett Vol. 47. No 2. 15 .uly 1985 Krishnamurthy, Sher. and Chent 161
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the L edges have a larger s content, alloy scattering reduces ties of the constituents. Howev.er, the additon of intervarley
the average mobility substantially for small x. Even though scattering mediated by phonons and impurities is expected
the s content is almost the same for all x;!0.20 at the X edge, to increase the dip near crossover. -.

the mobility still decreases to x z0.5 as shown in Fig. I be- In summary, an expression for alloy-scattering-limited
cause of the x(l -xi term in Eq. 1101. charge carrier mobilities is derived for indirect gap alloys

An interesting feature is obtained for the compositions with multiple bands. This expression reduces to Brooks' for-
0. 13%,x -:0. 18. The average mobility attains a local mini- mula for direct gap alloys. The quantities m* andAE can be
mum near x = 0.14 and a smaller maximum at r = 0.17. calculated exactly. Alloy scattering accounts for the ob-
This feature occurs because of the X to L crossover. " For served mobility features in the Si. Ge_ , alloy, including
x 0.14, the major contribution to/. comes from L minima, the anomaly near the L to X W,) crossover.
Near x = 0. 14, the density of states increases because the X A.-B. would like to thank Professor W. E. Spicer for his
and L minima merge. So the alloy scattering increases there hospitality at Stanford University. This work was supported
and the average mobility decreases. For x-0. 14, the."bands in part by DARPA contract MDA 903-83-C-0108 and grant
have the lower minima. As the s content is small at the X AFOSR-84-0282. 1I..

minima, the reduced alloy scattering increases the average
mobility. For larger values ofx. the x( I - x) term takes over
and the mobility varies as shown. The values of measured 'L. Nordheim. Ann. Phys. 9. 607(1931) 9 641 i19311.
Hall mobility in Si, Ge, systems are also plotted in Fig. I. H. Brooks junpublishedl. A discussion of this formula can be found, for

example. in L. Makowski and M. Glicksman. J. Phys. Chem. Solids 34.
The interesting feature near x = 0. 14 is clearly seen. Since 48711973.Sthe experimental drift mobility P for Si_ Ge _, is not 'A. Chandra anid L. F Eastman. J. AppI. Phys. 51. 266q (1980).
available and the generalization of Eq. 1101 to Hall mobility 'D. Chattopadhyay and B. R. Nag. Phys. Rev. B 12. 5676j1975).

'K. C. Hass. H. Ehrenreich. and B. Velicky, Phys. Rev. B 27, 1088 119831.
1u , is less clear, we present the calculated 0 . and experimen- 'J. W. Hamson and J. R. Hauser. J. Appl. Phys. 47,292 (19761.
talp u, lRef. 7,S) here. While we do not expect quantitative 'M. Glicksman. Phys. Rev. 111. 125 119581.
agreement. becausepf,/PD can range from 1 to 2, ' we do M. Glicksman. Phys. Rev. 100. 114il19551.

expect them to display the same qualitative x dependence. It 'A-B.341 Chen G. Wesz. and A. Sher Phys. Rev. B 5.28971972). See Eq.

is rewarding to note the similarity in the trend in Fig. 1. '"D. S. Montgomery, J. Phys. C 16. 2923 (19831.
Previous authors explained the dip in the mobility curve by "S. Knshnamurthy. A.-B. Chen. and A. Sher (unpublished).
including intervalley scattering with an arbitrary adjustable ':S. M. Sze. Physics of Semiconductors, 2nd ed. iWiley-lnterscience. New •York. 1981)." "

coupling constant.' Our calculations automatically include "V. A. Johnson and K. L. Horowitz. Phys. Rev. 79. 176 t19501; 79, 409

that portion of intervalley scattering that results from alloy A19501. ow0
disorder with a coupling constant set by the atomic proper- "H. Jones, Phys. Rev. 81. 149 (1Q51).

645,a
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FIG. I. Variation of the band gap (solid line) and the Si -

2p core-excizon level with x in Si,,Ge _x alloys. The energy 0.28

is measured from the tOp of the valence band. The dashed-
curves a. b, and c represent exciton levels calculated with 0.15
E° = 0. ,0.15. and 0.3 eV. respectively.

by replacing the short-range Coulomb potential with a 0 24

spherical square well of variable depth and a screened
Coulomb tail. Strinati's results can be used to estimate 21

A, corresponding to the calculated Eb. A, decreases 0o18
rapidly with Eb, then saturates for larger E. '

The contribution to the natural linewidth from the 0o15
alloy broadening is calculated by a consideration o1• the o; '-'-'-iT"...
electron part of the exciton wave function. ,b1 The ,, 01o 02 04 06 08 ... -0-

is expanded in a linear combination of the s part of thex .-.
conducton-band wave functions kn: FIG 2. Varation of (solid knes and (dashed lines

with xfor three E+-' values. w x•aT e y

.. , k = _ c-,,.6 tk).(7)

The calculatedA. which is the sum of A, and. A d. .i

We found that alloy scattering is only moderate and S plotted against .\ in Fig. 2 for three values of E . In all ""
scattering is dominant; thus, the alloy broadening three panels, the dashed cure represents A, and the '-

A (< E) is well approximated by solid line represents A. It is seen from Fig. I that the "

4() x ,( E.() exctton level follows the N edge of the conduction -.,Eband. Hence the binding energy E. relative to the

where 8 is the difference between Es' and E e. conduction band edge, remains almost constant (for a -- '.

Hence the alloy-broadening contribution to A is relat- given E) until the minmum switches from the '

ed to the alloy broadening of the band states, edge to the L edge. Because of the change in the slope
A,(k. E). of E, Eb decreases rapidly when L becomes the

I minimum. Correspondingly. A, varies slowly until the

A +=.- ] (,h,( k) A +(E),b 1( k)) A to L crossover and then increases rapidly. Ths +
rpd k feature is clearly seen in Fig. 2. .,-.r•

The conrFor E=i0 It, the A, and A. are comparable near .

k,, t2 A(kE x =0.50. and A, dominates for all small . and large x. -i"
These twon competing echanisms gi,.e a relatie

e fl,(ErA(E),rE mtnimum near x 0.1co. a broader maximum near

x 0.50. and smaller minimum for pure silicon. As
= ,(I-x), fp(E),t . (9) is decreased, the relatie minimum is shifted to

larger ia eg.. the mtnimum shifts to x =0.20 for

wit x'- 1or thre E;) values. he-

he integral in q. (9) is ehaluated numericallc c lt1 eV. For , s the o nd

Waidl i
scattering+ , +:.is dominant, thus, the- allo ba. three panels: ::. the? dse cur ,e r s- e A,' i-21 and the

-1~~ ~ D swl prxmtdb oi iereet . It i......... ......... . I hth
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Dislocation energies and hardness of semiconductors
A. Sher
SRI International Menlo Park. California 94025 .

A.-B. Chen
Auburn Uniersty. Auburn, Alabama 36849

W.E. Spiceroe u b x n
Stanjbrd Uniuersity. Stanford, California 95305
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:,' The dislocation energies and hardness of semiconductors are calculated by an extension of i

Hamson's method. It is demonstrated in agrement with experiment that dislocation energies per
unit length are proportional to d - - d -', where d is the bond length and hardness is proportional
to d - - ". The hardness is related to the interaction energies among dislocations. It is argued
that dislocation densities of semiconductors will be reduced if they are alloyed with a second
constituent that has a shorter bond length. Experimental evidence supporting this strategy is
noted.

Dislocations in semiconductors are detrimental to de- indentation to depth h is N, = At lb = W cos 0 /b, where 0-
vice function, they serve as channels for impurity migration is the angle between the normal to the tip of the indenter and
and trapping, which cause nonuniform doping and degrades a side. Figure I also shows a model of one possible configura-
p-n junctions.' They also decrease the material's resistance tion of the dislocations. The edges of the extra atom planes
to plastic deformation. The aim of this letter is to provide that are driven from the indented volume into the bulk of the
insights into the underlying physical mechanisms control- semiconductor are shown as lines terminated by dots. The
ling dislocations and semiconductor hardness, and then to dotted ends of these lines are the positions of the disloca-
suggest strategies for decreasing dislocation densities. It is tions, which are perpendicular to the plane of the figure. The
well established that the hardness of tetrahedrally coordi- planes driven to the sides each have a finite extent and a
nated semiconductor materials-groups IV, III-V, and 1I- trapezoidal shape. The planes driven down under the indent-
VI compounds--exhibits a sharp variation with their near- er have a square shape.
neighbor distance d, approximately proportional to d -' for Much of the work done on the indenter goes into the
one group of seven compounds.3 Thus, semiconductors with energy to form the indicated dislocation configuration, al-
small lattice constants tend to be harder materials. These though some certainly goes into heat. There are two major
same materials have larger stiffness coefficients' and have contributions to this formation energy. The first is the enegy
fewer dislocations in as-grown crystals. '  needed to generate each dislocation as an isolated entity, and

The shear coefficients (combinations of C,, and the second is the interaction energy among these disloca- - '
C, - C,. in the Schoenflies notation 7 depend on crystal tions. Because the interaction term dominates H, approxi-
orientation and Iin Harrison's notation') are proportional to mations made to simplify the first term are relatively unim-
V*'/Id',V' V')'3 1 ,where Vc:d -2 isthecovalentand V, portant. The extra planes driven to the sides of the
is the ionic energy. The metallic interaction modifies the indentation have a finite extent; accordingly (in this idealized
functional dependence of the shear coefficient on V, and V3, picture), there are both edge dislocations at their base and
but introduces no explicit dependence on the hopping inte- screw dislocations associated with their termination. The
grals, denoted V, by Harrison. " In a pure covalent material, square planes driven below the indentation have edge dislo-
the bond energy is proportional to V2 (or d - 2), and the bond cations around the sides and screw dislocations at the
volume is x d 3; hence, in this case. the shear coefficient var- corners to make the turns. Moreover, there are interactions
ies as d -'. In the limit, V3> Y, C, - C1 2 z d - '. For most
polar semiconductors, d -' is a good approximation. I- ' 1

Hardness is determined by applying a known force F to
a probe of a prescribed shape driving it into the surface of the I
sample.' The area A of the resulting indentation is measured, N ,
and the hardness is the force per unit indented area. Many j I
dislocations must be formed to allow the probe to indent the-
semiconductor. If the indenter is a rectangular pyramid, ,'-- ______,_

thenthehz dnessisH = F/A = Fh/Ah = e,/Ah, whereer i = =,,,
is the work required to cause the indenter to penetrate to a
depth h. A side view of the indentation in a cut through its FIG. 1. Schematic representation of an idealized minimum-energy disloca.
center is illustrated schematically in Fig. 1. The top of the tion configuration produced by a square cross-section indenter in a hard-

indentation has side length W; thus, A = W2 . The Burger's nessmeasurement. Wisthesidelengthandhisthedepthoftheindentation.
In this ideal case, half the material from the indented region is displaced

. vector has magnitude b, proportional to the bond length d. along the glide planes lindicated by the dashed arrows) to the sides and half
The number of dislocations N, required to accommodate an is displaced below the indenter.
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among the dislocations, which can produce a minimum-en- tant. However. care must be taken with the interaction .

ergy configuration. For the arrangement depicted in Fig. 1, terms: Eq. (1) neglects a number of secondary interactions,
it always costs energy to position a second dislocation on a some positive and others negative; these vill be added later.
parallel glide plane to one already present. However, the The principal neglected terms are the interactions between
magnitude of this extra energy can be minimized and, for the dislocations in the different regions on each side (posi-
proper configurations of the dislocations, there are attractive tivel and the interactions between adjacent side and bottom
forces along the glide planes that will tend to position the regions (positive), and the interaction between the opposite
dislocations into the minimum-energy configuration. The sides in the bottom regions Inegative). Comparison of the
minimum configuration arises when half of the atoms from results with experiment will indicate how important these
the indented volume go respectively to the side and below the neglected terms are likely to be. The length L, is W (N - i)/N
indenter. Then, in both regions, the maximum angle made for i from I to .% This is the largest length of the side-inserted
between successive close-spaced dislocation lines and their planes and its choice partially accounts for interacitons
glide planes is J = ir/2 - 0/2, as shown in the figure. This is between the otherwise neglected screw dislocations. The dis-
the minimum realistic energy configuration. If the disloca- tance r,, = r, - F, is given by 2 -l i -Jl for i andj ranging
tions are separated more than shown in Fig. I, then there is from I to N for the minimum-energy configuration and a
more volume of strained material and the interaction energy tetrahedrally bonded semiconductor. Finally, in the indicat-
would be larger still. ed configuration, p, = = ,r/2 - 0/2. Inserting these ex-

An approximate expression for the energy required to pressions into Eq. J 1) and retaining only terms of order N-
indent the material is7  yields

Er .24[ EL, +1 .E, minlL,..L,)] (1) Hm - --o' [ -In + sin (4) .
2,_, m 6I - vi 3 3 2J

In the first term, using an isotropic medium approximation
and neglecting core terms, the energy per unit length to form One can also get a number for the hardness ofa disloca-

an edge dislocation is7  tion in which all the material is pushed along the same glide
plane. e.g .. to the side. to the bottom, or normal to the face of

E,= Gb In-, 2) the indenter ia possibility not depicted in Fig. 1). In this case,
4tIl-v) ro  the factor of 2 in front of Eq. II is removed. N =-.N and

the shear coefficient is G, the Burger's vector b = d /3 for an 4 = r/2 - 0. Then a higher nonequilibrium hardness in the
indentation along a ( 100 axis, the range of the elastic defor- context of this model denoted HI), is obtained.
mation of a dislocation R is taken equal to W (for want of a G cot 0 In(cot0 4
better approximation), ro-d is the dislocation core radius, H , In-- sin- 0 (5)
the Poisson ratio is v-0.2 for most semiconductors, and L, 3",-I - vi V-2 3

is the length of the ith dislocation. In the second term, E,, is The proper answer for most materials, and depending on

the interaction energy per unit length between dislocations i crystal orientation, probably lies somewhere between H.,,,n
and]. Assuming they have parallel glide planes and their and H,. For an indenter with 0 = i-/4, we have H,n
Burger's vectors have the same sign, E, is given by' 0.0969G/(I - v) and H/Hm,, = 2.39. Harrison' has

shown that one contribution to the shear coefficient (actually
Gb' [r.E, 2 1v + cos2 q, , (3) C1 , - C,,) is G = 2.38 *'ma'/md , where m is the free-

2"-1 - v)11 212

iii ~electron mass, a, is the covalence, a, = P/v1)V+V '

where r, is the separation, and q,, is the angle that a line and d is the bond length. We will approximate G by this
perpendicular to and joining the dislocations makes with the expression. Using this G and v = 0.2, and changing the di-

-. glide plane, as shown in Fig. 1. Because the various disloca- mensions to those in terms of which experimental hardness
tions in a region have different lengths, the net interaction numbers are customarily quoted gives H,,,,, = 2.38 X 10'
energy is approximated by multiplying the energy per unit (a,/d 5) kgm/mm", whered is in angstroms. Calculated val-
length by the length of the shorter one. The upper limits on ues of H,,,, and H, are plotted against experimental results
the sums .Vare the number of dislocations in one region (side in Fig. 2 for a number of semiconductors.
or bottom) associated with one edge. For the minimum-ener- Figure 2 has the theoretical H,,,, and H, values con-
gy configuration, N = N/2. The four that multiplies the nected by arrows from H,, to H, for each compound, plot-
bracket accounts for the four sides, and the two for the two ted as a function of the corresponding experimental %al-
regions for each side. ues.' Ifthe theory were perfect and the exr 2rimental values

We now encounter our first surprise. As we can see were accurate, the points would fall on the indicated unity
from Eq. 121and 3), E , and E, have comparable magnitudes. slope line. Several conclusions can be drawn. Firstly, the
Because there are approximately N' terms in the interaction order of magnitude of the predicted and measured values are 14
energy sum, only N terms in the formation energy sum, and the same, a result obtained with no adjustable parameters in
Nis a large number IAN> I), the interaction energy completely the theory. Secondly, the trends from one compound to an-
dominates the hardness. In fact, N is typically of the order other are properly given by the theory. Although the H,,
.0'. Hence, terms owing to screw dislocations, core energies, values are generally too small, they fit the soft materials bet-
heat dissipation as the dislocations propagate to their places, ter, and the H, values fit the harder materials better. Thirdly,
and other effects associated with the first termr are unimpor- from Eqs. (I) and 13), H is given in a rough but revealing
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in the recent work reported on Zn, _ Cd, Te bulk material.'
The best CdTe that has ever been grown has dislocation den-
sities in excess of 5 x 103 cm - 2. The addition ofonly 4% Zn
reduced the dislocation count to less than 5 X l0' cm -2. The
ZnTe bond length is 2.643 A, while the CdTe bond length is
2.805 A, a 6% difference. This 6% difference in bond length
translates into a 2% difference in the dislocation energy per %

. unit length for I - x = 0.04. Dislocation energies per unit
length are typically 10 eV per lattice spacing; accordingly, a
2% increase can be expected to slow their formation rate
considerably.

The argument just presented naturally leads to a strate-
G" gy for decreasing dislocations in other semiconductors. If an

alloy is made of the material of interest with another com-
I , pound with a shorter bond length, then the dislocation den-

sity should be reduced. For example, this suggests that the
addition of a small amount of GaP (d = 2.359 A) may signifi-

_ _/_. cantly reduce the dislocation density of bulk grown GaAs
m low ism (d = 2.448 Al. It has been demonstrated that the addition of

approximately 1% GaN (d = 1.946 A)5 6 or of a 10" cm -  " "
FIG. 2. Theoretical vs expenmental hardness of several semiconductors in BAs (d = 2.069 A) concentration" to GaAs can yield a large
Refs. 2 and 9. The two theoretical values for each semiconductor are con- ve
nected by an arrow from H., to H,. Perfect agreement would correspond volume of dislocation-free material. An lnAs additive with
tc points being on the unity-slope soltd line. its longer bond length (d = 2.623 A) serves the same function

indirectly, by causing GaAs bonds in its neighborhood to be
approximation by 4N 2k.L /Ah, where the averge disloca- compressed. This indirect mechanism should be less effec-
non length L = W/2 and E,, is the average dislocation pair tive than substituting short bond length additives.
interaction energy per unit length. Notice that .V (or W) can- We have demonstrated that the dislocation energies
cels from this expression, thus, H is independent of W (or F) and hardness of tetrahedrally bonded semiconductors are
and therefore. H is truly a measure of the properties of the rapid functions of the reciprocal of the bond length. This
material. This result would not be found if the dislocation rapid d dependence of dislocation energies provides a ratio-
energies ( ce N) were to dominate H rather than the pair inter- nale for the dramatic decrease of the dislocation density in
action energy J c .V'). Finally, the Berger's vector cancels bulk grown Zno.oCd0 9 ,Te material relative to that found in
from the leading term and appears only in the argument of CdTe, and suggest means for accomplishing the same ends in %

the logarithm in Eq. 13). Thus, the answers are also insensi- other materials.
tive to its choice. The authors are indebted to J. P. Hirth, W. A. Harri-

Dislocations are often found in materials as they are son, and T. N. Casselman for helpful comments. This work
grown. Their density is determined by the thermal and me- was supported in part by DARPA contract MDA 903-83-C-
chanical stresses to which they are subjected in the growth 0108 and AFOSR contract 49620-81-K-0012.
process. A dislocation constitutes a metastable excitation
relative to the perfect crystal ground state. At the elevated

'E. M. Swisgard. Proceedings ofGaAs IC Symposium. Phoenix. AZ 1983,growth temperatures and temperature gradient behind the p. 26.
growth front, the number of dislocations present is con- 'N. A. Groyunova. A S Borshchevskii. and D. N. Fretiakov, in Semicon-
trolled by the relative rate at which vacancies anneal or con- ducrors and Semimetals, edited by R. K. Willardson and A. C. Beer (Aca-
dense into dislocations. ' The dislocation formation rate will demic. NY, 1Q68). Vol. 4, Chap. I.

ba. A. Hamson, Electronic Structure and the Properties of Solids IFree-
be slower in a material grown at the same temperature if E, is man. San Francisco, 19801: R. C. Sokel. thesis. Stanford University. 1978;
higher. If an alloy is formed from a material of interest and a W.A. Hamson.Microscience tlimited distrbution SRI International pub-
second constituent with a shorter bond length, one expects lication. Menlo Park. 19831, Vol. 4, p. 34.
the average bond energy (and thus both the melt temperature 'S. L. Bell and S. Sen. presented at Infrared Imaging Systems iIRISI Detec-

tor Specialty Group Meeting, Boulder CO, 1983; T. W. James and B.and vacancy formation energyt to increase proportional to a Zuck. ibid.
low inverse power of the average bond length.' Hence, the 5Y Seki. H. Watanabe, and J Matsui, 1. Appl. Phys. 42, 822 11983).

equilibrium vacancy density just below the melting point 6G. Jacob. J. Cryst. Grovth 59. 6o9 11982).

tends to be the same in lowest order for all materials, inde- ''. w. Chnstan. Theory of T'ansformations in fetals and Allos. 2nd ed.
lPergamon, NY. 19751, Chap. 7. For a discussion of the interaction ener-

pendent of the bond lengths of the constituents. However, gies. see .P.. Hirth and J. Lothe. Theory of Dislocations, 2nd ed. iWiley.

the shear coefficient and dislocation energy per unit length NY. 19821, pp. 262-263.
will increase with much higher inverse powers of the bond 'W. A. Harrison, Phys. Rev. B 27. 3592 11993).

lengh. Cnseuenty. isloitin desites soul be e- 9S. Cole and A. F. W. WAilloughby, J. Cryst. Growth 59. 37011982).
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Sensitivity of defect energy levels to host band structures and impurity potentials in CdTe
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The sensitivity of defect energy levels in semiconductors to the host band structures and impurity
potentials has been studied for approximately 30 impurities in CdTe using four different band-
structure models. The discrepancies in the defect levels between two different sets of band struc-
tui'es and impurity potentials are found to range from less than 0.1 eV to the whole band gap 1l.6
eV). The band-structure effects are analyzed here in terms of detailed partial densities of states.
Examples of contradictory predictions from different band structures are illustrated, and ways to
improve the theory are suggested.

I. INTRODUCTION II. CALCULATIONAL PROCEDURE

" In several of our recent papers,1 - 7 we have applied a In the simple site-diagonal substitutional defect model,

method to calculate the band structure of semiconductors the impurity energy levels E are determined by the equa-

that is both efficient and accurate. Because the procedure t-of

involves casting the basis functions into orthonormal local ,-v gE=0,:
orbitals' (OLO), our method has the advantages common
to empirical tight-binding (ETB) calculations,. -  except where a designates the symmetry of a local state, e.g., F 6,
that the Hamiltonian matrix elements to all ranges are re- F 7, and F8 on an atomic site in the zinc-blende structure,
tained. The inclusion of these higher coefficients makes it and g,, is the real part of the diagonal matrix element of
possible to produce excellent band structures including the host-crystal Green function. g,, can be calculated
conduction bands and effective masses. The method also from the partial density of states (PDOS) by
yields wave functions for optical property calculations. 7  ga(E) fpa(e)/(E-E)d,. (2)
Moreover, its OLO description also permits its extension,
through the coherent-potential approximation, to al- The PDOS is given by
loys.'-5

The recent attention focused on defects in semiconduc- p,()=2 a,(k) 1 25(e-c.(k)) , (3)
tors motivated us to apply our method to this problem. nkk

The theories of defects have ranged from very sophisticat- where e,(k) are band energies and a '(k) are the probabili-
ed self-consistent density-functional theory" - 3 (SCDF) ty amplitudes of the band state in the Bloch basis con-
to simple ETB calculations. It is generally recognized structed from the OLO labeled by a. The Brillouin-zone
that SCDF is as accurate in defects for the ground-state integration in Eq. (3) is calculated using an accurate ray
properties as it is for pure semiconductors, but less certain scheme) 8

in assigning excited energy levels. ETB, because it can Because a principal concern of this paper is the sensi-
produce results for many systems in one study, claims to tivity of impurity levels to the host band structures, we
predict the trends of deep levels ° even if the accuracy for should emphasize the difference between our method and
a given impurity may be poor. However, this contention ETB. Our method consists of four steps.
remains to be verified. (1) We start with four Gaussian orbitals per atom and

To assess this concern, we ask the following question: empirical pseudopotentials, 19 and compute the Hamiltoni-
'How sensitive are defect levels to host band structures an matrix H(k) and overlap matrix S(k) as was done by O

and impurity potentials?" To this end, %e have adopted Kane and Chadi.2 "
the simple yet nontrivial defect model, tat of site- (2) The Gaussian orbitals are transformed into OLO,6  '
diagonal substitutional defects often used in El B studies. so 11(k) is transformed into H,)(k) and S into the identity
CdTe was selected in this study because its band structure matrix. The band structures calculated from Ho(k) are
has been examined in great detail by us, and there are accurate to 5% as compared to more sophisticated
three published band-structure modelss io ',.at we could methods using the same potential.'
easily generate for comparison. There is also a consider- (3) A spin-orbit Hamiltonian in the OLO basis' is in-
able body of experimental data on deep states in this sys- corporated to deal with this interaction.
tem.1 - 7  (4) To compensate for the effects of truncated basis and
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nonlocal potentials, a perturbation Hamiltonian H, is
added. H, has the same form as a truncated ETB Hamil- "
tonian. The parameters in H, are adjusted to fine tune
the important band energies and effective masses.'

Although both ETB and our methods are empirical, 0

there are two major differences.

(1) While most ETB retains the H matrix elements only -
to the first- or second-neighbor shell, ours extends to all -t I b

ranges, so that the high Fourier components needed to >- 1

produce the sharp band curvatures are properly given. .
-

..

(2) Our method can directly generate wave functions for
calculation of other properties. Z I .

Thus, while our method yields more accurate band struc- "

tures, it retains much of the advantage of ETB. namely 0

the computational speed and a simple direct-space I

description of the Hamiltonian. .
-5 I

I1. BAND STRUCTURES AND PARTIAL [0 -dl

DENSITIES OF STATES -10 !.[

Figure 1 depicts the four band structures to be con- r x w L r i.uxr x w L r KU X
sidered for CdTe. Our result is in panel (a); panels (b) k (2,,/a)

(Ref. 8) and Cc) (Ref. 9) are two ETB band structures with
the Hamiltonian matrix elements truncated at second FIG. i. Four band structures of CdTe used for comparative
neighbors. tBecause different parameters were selected, studies: (a) present work, (b) Ref. 8, (c) Ref. 9, and d) Ref. 10.
these two band structures are not identical.) Panel (d)
(Ref. 10) results from the use of five basis orbitals per
atom; the extra one is an excited s state. All these band
structures are adjusted to have the proper fundamental 2.0 Cal

band gap of 1.6 eV. The principal differences one sees on
first inspection are in the band curvatures, especially the
conduction bands. The effective mass at the bottom of 1.0

the conduction band in panel (a) is 0.1 times the free-
electron mass, in agreement with experiment, 17 while in
other panels it is more than twice as large. 0.01

Figure 2 shows the densities of states (DOS) for each of W ., .b

the band structures in Fig. 1. While the valence bands at --

least exhibit general common features, the conduction .-
bands are almost unrecognizable as representing the same
compound. In panels (c) and (d), for example, there is a Dsecond band gap above the fundamental gap. Also note A)Mo4J

W 0.0.___________________
that there are two extra narrow peaks associated with the ' 2.0

two extra excited s orbitals (one for Cd and the other for - "
Te) included in the calculation.

To analyze the band effects on defect levels [see Eqs. (1) L 1.0
and (Z], the DOS is further decomposed into partial den- >-
sities of states for re(s), r-(p I2), and rF(p31/2 ) states on t

the Cd and Te sites, as shown in Figs. 3-6. The r 0.0

PDOS are not shown because they are nearly the same as 2.0 Wd
r, with only a slight upward energy shift. These PDOS
show how the "atomic" levels evolve into band states.
These curves contain useful information about many 1 0 0

properties, e.g., the relation between the crystal bonding
and atomic energies. and how potential disorder in alloys 0.0
affects different parts of the bands, - -5 in addition to de- .1 4 - 0 4 8 12

feet levels studied here. ENERGY (eV)

The r,(Cd) PDOS shown in Fig. 3 split between the
conduction and valence bands. It is generally assumed FIG. 2. Densities of states calculated from the four band
that the cation s states in IlI-V and II-VI compounds structures in Fig. I.
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evolve into the conduction bands, while the anion p states all four panels in Fig. 5 show that the Te s states are con-

make up most of the major valence bands just below the fined to the deep valence-band states, as generally recog- \.

gap. Thus it is perhaps a surprise to see a prominent peak nized. Finally, Fig. 6 shows that the Te p states dominate
derived from the cation s states at the bottom of the ma- the upper valence-band states. Panel (a) has much less
jor valence-band structure. However, this is a general conduction-band content than the other three panels. As -,-

feature for all sp 3-based compound semiconductors. we will see, these differences can result in quantitatively *.

These are the states responsible for the first observed or even qualitatively different predictions about the deep
breakdown of the virtual-crystal approximation for a levels.
semiconductor alloy: Hg1 ..,CdTe (which is caused by
the large s-energy shift between the Cd and Hg sites)."', 2  IV. IMPURITY-LEVEL DETERMINATION

A more detailed examination draws attention to some
important differences among the four panels in Fig. 3: A convenient way to study the impurity energy levels
the valence-band peak in panel Ic) is about 2 eV higher using Eq. (1) is to rewrite it as va = 1/ga(E) and plot E as
than the rest, and it is also high compared to experi- a function of v. Once this E-v curve is deduced for each
ment.2 2  Our conduction-band PDOS in panel (a) is a, the deep levels E, for a given impurity can be read off
broader than the others. The ratio of the integrated the curve by drawing a vertical line at the appropriate
PDOS in the conduction bands to that in the valence value of va for the impurity. We set the zero of energy at
bands in our model is larger than those in other panels, the top of the valence bands. Because the gap is 1.6 eV,
Also our PDOS just below the valence-band edge is obvi- we will focus on levels in the energy range from -0.5 to
ously smaller than that found in other models. 2.0 eV.

Figure 4 shows that the Cd p states are concentrated in Calculations have been performed for all neutral impur-
the conduction-band states. This is particularly true in ities listed in Table I. Because we do not believe that
panel (a), where their contribution to the valence-band there exists a uniformly accepted table for v we have
states shrinks almost to nothing. In other panels, there adopted a table that we used for structural studies. 3 '

are still sizable (-20%) valence-band states. In contrast, Table I lists the term values, which we obtained from to-

TABLE I. s- and p-state correlated term values in units of -eV. The top entry is the s-state, the

second the pi/ 2-state, and the third the p3,a-state energy. (All energies are negatice.)

I II III IV V VI VII l,

Li Be B C N 0 F
5.390 9.320 14.003 19.814 26.081 28.551 36.229

5.412 8.300 11.260 14.540 13.613 17.484
5.412 8.300 11.260 14.540 13.610 17.4.20

Na Zn Al Si P S Cl
5.140 9.390 11.780 15.027 19.620 21.163 25.812

4.237 5.980 8.150 10.610 10.449 13.136
4.011 5.980 8.150 10.550 10.360 13.010

K Cd Ga Ge As Se Br
4.340 8.990 13.230 16.396 20.015 21.412 24.949

4.313 6.000 7.880 10.146 10.188 12.353
4.097 5.850 7.694 9.810 9.750 11.840

Rb Hg In Sn Sb Te I
4.180 10.430 12.032 14.525 17.560 19.120 21.631

4.998 5.780 7.340 9.391 9.951 11.470
4.031 5.453 6.879 8.640 9.010 10.450

Cs Pb
3.890 15.250

7.4!0
5.979

Cu
7.720

Ag

7.570
3.647 
3.487
Au9.220 -1

4.349
3.688 .-_ _____ _ _-:"~

• ..o
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FIG. 7. The E-v curves for the 1 6 states on a Cd site. FIG. 9. The E-u curves for the r6 states on a Te site. w

tal energy differences between atomic configurations cal- below the Cd s level (-8.99 eV) will produce a r6 level in
culated using the norm-conserved pseudopotentials2 5 and the gap. However, we note that in Fig. 7, ga(E)=O for
se!f-consistent charge-density-functional theory, with the models (b) and (c) just below the valence-band edge be-
first ionization energies adjusted to be the experimental cause of cancellation between the conduction- and
values.:-6 These term values are found to yield consistent- valence-band contributions. At this E value, the E-u
ly better structural properties23 in Harrison's theory27 -8 curve switches from v = - c to v = co (not shown); an
than those based on Mann's values29 adopted by Har- ideal vacancy level (corresponding to v. = co) is located at
nson. 58 The impurity-potential parameters wiil then be this E. A similar consideration, but with the conduction
taken as the difference of the term values between the im- and valence bands interchanged, leads to an understanding
punty atom and Cd (or Te). To study the sensitivity of of the curves in Fig. 10. Using the same principle, we can
E, to v,,,, we shift va by ±0.5 eV and compute the corre- easily understand why all curves in Fig. 9 for the [ 6(Te)
sponding changes in the energy levels, representation are positive, but the reasons for the large

Figures 7-10 display the E-v curves for several a. displacements between these curves are not easy to
Each figure has four curves, corresponding to the four deduce. In Fig. 8, the curve labeled a is distinctively dif-
panels of PDOS in each of Figs. 3-6. The functional ferent from other curves, because the PDOS in panel (a) in
behavior of these curves can be understood qualitatively Fig. 4 is completely dominated by the conduction band;
using Eq. (2) and Figs. 3-6. If E lies in the gap, the con- however, for the other panels the PDOS just below the
tribution from conduction bands is negative, but positive valence-band edge are as large as those just above the
from the valence bands. The closer the PDOS to the E in conduction-band edge. This produces a very sharp nega-
question, the larger will be its influence. Applying this tive E-v curve for (a), but split behavior for (b), (c), and
argument to the r 6 (Cd) representation, we see that the (d).
curves in Fig. 7 are negative in the gap region because the These E-v curves provide a clear picture of how dif-
PDOS in Fig. 3 near the bottom of the conduction bands ferent host band structures may affect the deep levels.
are much larger than those near the valence-band top. Numerical values for the impurity levels can be obtained
Thus, on the Cd site, only impurities with an s energy from these figures by drawing vertical lines at the ap-

C To Sn Ga CdAg

* 2.0 2 .0 I

1.0 1.0-

ao,

uJJ0.5 0.5- I

0.0 0.0-

0 I L:'L:* 52 1 1 0 5/ -10 , '...,
-25-2o-15 - o 0 5 10 15 2025 0 5 10 15 20

V (eV) V eV)

FIG. 9. The E-v curves for the r7 states on a Cd site. FIG. 10. The E-v curves for the r7 states on a Te site.

t n.s..-



31 SENSITIVITY OF DEFECT ENERGY LEVELS TO HOST... 6495

propriate impurity potentials (i.e., differences between the p levels on a Cd site. For example, the filled p level of C - ,
term values listed in Table I), as has been shown for on a Cd site in model (a) is a resonance state just below
several representative impurities. To provide a more the valence-band edge but is a donor state in the other . -

quantitative comparison, Table II lists some calculated models. Similarly, model (a) puts the neutral Te antisite
impurity levels Ea and the corresponding changes AE. defect p levels at about - and - of the gap [E(Fr) =0.48
due to the I-eV change in v.. eV and E(rs)=0.95 eV], while other models assign them

V. RESULTS AND CONCLUSION as resonance states inside the conduction bands. We also
note that the discrepancies between different models are

To summarize we recall that band models Ib) and (c) not uniform, but vary with v. Consider Fo(Cd) for ex-
are the same second-neighbor ETB with two different sets ample. All four models yield the same ordering and about
of parameters, and model (d) is a first-neighbor ETB with the same energies for the group-IllI impurities A], In, and
one extra s orbital per atom. Our model [model (aJ] has Ga. However, as v becomes more negative, the splitting %
the form of ETB but is derived in a very different manner between the curves increases, so the discrepancies become -,'

and includes all the long-range interactions. Therefore, larger I -I eV difference between models (a) and (d) for I
we expect that the results from models (b) and (c) will be impurity]. Similarly, for the r7Te) states, all four models
close, model (d) will have larger discrepancies from (b) put the Sn impurity energies close to the valence-band
and (c) than that between (b) and (c), and model (a) will edge, but the agreement deteriorates as v, increases.
differ even more. This is evident from Figs. 7-10 and Regarding the sensitivity of energy levels to impurity
Table II. We found the energies for the Fr6(Cd), F 7(Te), potentials, Table II shows that a l-eV shift in va produces
and rs(Te) states produced by models (b) and (c) agree a change in E, ranging from less than 0.1 to 0.65 eV.
within 0.1 eV. For the other states, i.e., r(Te), r'-(Cd), Very little is known about the size or trends in errors in-
and Fs(Cd), the energies from (b) and (c) are qualitatively troduced in v, from the use of atomic term values. How-
similar, but the difference can be as large as 0.4 eV. The ever, we know that the discrepancy of v. between two dif-
largest discrepancy between models (d) and ib) [or (c)] is ferent tables of atomic term values can be larger than 2
more than 0.5 eV, and that between (a) and other models eV. This discrepancy translates into an uncertainty of less .
is more than I eV. The largest difference comes from the than 0.1 to more than I eV in the impurity energy levels,

TABLE II. Defect energy levels E and changes AE due to a l-eV change in the impurity-potential parameter. All energies are in
units of eV. V stands for ideal vacancy.

Model (a) Model (b) Model (c) Model (d)
Defect E AE E AE E AE E AE

r, on Cd site
Ga 1.29 0.39 1.42 0.24 1.33 0.23 1.57 0.18
C -0.21 0.09 0.38 0.09 0.36 0.13 0.74 0.08
Si 0.07 0.30 1.02 0.10 0.93 0.19 1.27 0.15
P -0.19 0.11 0.39 0.09 0.38 0.08 0.75 0.08
O < -0.5 -0.02 0.02 0.04 0.01 0.32 0.02
Te -0.13 0.13 0.44 0.10 0.42 0.08 0.79 0.09
CI < -0.5 0.06 0.03 0.10 0.02 0.41 0.04
Vo < -0.5 < -0.5 -0.30 -0.20

r 7 on Cd site
C -0.02 0.37 1.32 0.22 1.59 0.20 1.39 0.19
Si 1.57 0.65 > 2.0 > 2.0 > 2.0
P 0.16 0.38 1.48 0.26 1.73 0.23 1.52 0.21
o < -0.5 0.89 0.14 1.22 0.13 1.03 0.12
Te 0.48 0.55 1.60 0.29 1.88 0.23 1.66 0.24
Cl < -0.5 0.96 0.17 1.29 0.14 1.09 0.14

< -0.5 0.00 0.21 0.06

r, on Te site
Li 0.14 0.29 1.2s 0.22 1.15 0.35 0.76 0.25
Cu < -0.5 0.54 0.42 0.12 0.52 0.03 0.32

r7 on Te site
Ag 1.89 0.32 1.26 0.22 1.21 0.23 0.99 0.20
Cd 1.66 0.34 1.11 0.26 1.05 0.26 0.85 0.22 1'b

Ga 0.98 0.49 0.61 0.33 0.55 0.32 0.40 0.30
Si -0.07 0.40 -0.11 0.36 -0.13 0.38 -0.38 0.72
Sn 0.28 0.47 0.15 0.31 0.13 0.24 0.02 0.28 60*1
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which is comparable to that due to different host band latter have been shown to be sensitive to the details of tbh i
structures. paral densities of states.

Putting this large uncertainty in the deep levels against To establish the credibility of ETB in defect studies

a band gap of 1.6 eV, we are left with great doubts about one needs to look at the problem more seriously. The .

the predictability of this oversimplified theory. Unfor- most difficult and vet important task is to develop a better "

tunately. the experimental means available for identifying way for determining the Hamiltonian matrix elements.
microdefects in semiconductors are still very limited, and Haas er al.' and Harrison27 8 have suggested using the .

the ab ;nrtio band theory is still not capable of accurately atomic term values as the diagonal matrix elements. Our
predicting the energy levels. Thus, there is a great temp- workl - 4 has suggested using a universal long-range in-
tation to use simple theories like the one carried out here teraction to improve the accuracy of the conduction
to help with the identifications. To illustrate this point, bands. Several studies' 2 7' -8" 3 have also pointed out scal-
consider the following examples: Table II shows that Li ing rules of the matrix elements. A combination of these
on a Te site has an s level of 0.14 eV in model (a), so one ideas may lead to an acceptable model. Secondly, both
may be tempted to relate it to the acceptor state identified the bonding and deep-level states of impurities should be
experimentally.)1 However, this is not the hydrogenic ac- studied at the same time in order to provide correlated in-
ceptor state on a Cd site, as one might anticipate. One formation for defect identification. Finally, more realistic.1.
might also want to assign the and gap states for the models should be examined. Besides the substitutional
Te antisite p levels on the Cd site found from model (a) as site-diagonal defec:s, one should consider the possibility
those seen in experiments.' 5-" Because of the large uncer- of interstitial, paired. and even more complex defects.
taintv in the calculation, these results should be regarded One also needs to deal with long-range impurity poten-
as suspicious surprises rather than theoretical confirma- tials, possible charge shifts, and lattice distortions. Pro-
tions. gress in all these areas can be expected if the calculation is

The results presented here should not discourage con- constantly correlated with experiments and available
tinued research on the ETB approach, but improvement is ab inttio theory.
clearly needed. Work ranging from universal : " 7 3 ° to24 o 1. -2

spec:fic "3 
'
3 structural studies to our band calculations
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Effects influencing the structural integrity of semiconductors and their
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The bond length and energy changes of the constituents of alloys relative to their pure crystal
values are calculated from an extension of Harrison's method. It is demonstrated that the already
weak HgTe bonds are destabilized by adjacent CdTe, HgS. or HgSe, but are stabilized by ZnTe. It
is also argued that dislocation energies and the hardness of semiconductors vary as a high inverse
power of the bond length of the constituents. Hence. the shorter ZnTe bond as an additive should
improve the structural properties of HgTe and CdTe. Experiments that support these predictions
are noted. The electronic transport properties of 0.1 eV band gap HgZnTe are about the same as
those of HgCdTe. and the structural properties of the Zn compound are superior; thus, we
conclude that HgZnTe is likely to be the better material for IR devices.

I. INTRODUCTION are nearly the same. the alloy scattering strength at the va-
ojtmicroscopic lence band edge is small. We conclude that, because of its

The objective of this work is to understand the stucualavatgeoHscomypesueroitcg~~
mechanisms that govern the stability of Hg CdTe structural advantage. HgZnTe may be superior to HgCdTegovernal for infrared devicesloys. and then to suggest changes in the material that im-

prove its strength without adversely affecting its electronic II. ALLOY MODIFICATION OF THE BOND ENERGY
behavior. In pursuit of this goal we have extended Harrison's AND LENGTH
bonding theory,' which is applicable to all tetrahedral struc-
tured semiconductors, to calculate bond length and energy A. Pure compounds
changes in an alloy-including charge shift and reconstruc- The first task is to recast Harrison's bond energy and bond
tion effects-relative to their pure crystal values, vacancy length formalism into a structure suitable for generalization %
formation energies. dislocation energies, and hardness. to alloys. Focus attention on the nth bond of a pure zinc

In this paper. we review the experimental situation in sev- blende structured compound semiconductor, for the time
eral of these areas and compare some of the results with being, suppress any notation identifying it. Then, in a II-VI
theory for all the group IV. III-V compound, and I-VI compound, the bond energy is':
compound semiconductors and their alloys. For example.
the theory properly predicts the observed inverse ninth pow- Eb V, + -- p- I V 

er bond length i d-') dependence of the hardness- of semi- 2
conductors and, with no adjustable parameters, their correct 3

magnitude. We demonstrate that the weak HgTe bond is +2 d4
destabilized by a!'oying it with CdTe, HgS, or HgSe; how-ever. the bond is stabilized by ZnTe. Moreover, because the where the first term is the energy per bond needed to transferttwo electrons from a p state on the group VI atom the anion)

bond length of ZnTe 12.406 Ai is 14% shorter than that of
Hg/e 12.707 .A)or CdTeI2.S04 ,Ai, the dislocation energy per to a p state on the group II atom (the cation), so that both .

start with four electrons (ultimately in the final bonding ar-
uit length and hardness of the alloys Hg1 s oZnTe and - ".Cd1 _,Zn, Te are predicted in agreement with some experi- rangement there is a net electron transfer from the cation to--

ments to be significantly higher than those of the compounds the anionh the second term is the promotion energy per bond

with x = 0. Measureme; ;s indicate that the electron and to form sp'hybrds on both atoms, the third term is the bond
hole mootlities of H ,ZnTe with x -0.16. crrespond- formation energy owing to the covalent and icnic terms, the

ing to a 0.1 eV band gap. are comparable to tho~se of fourth terni is Harrison's metallization energy, and the fifth
l- _, Cd, Te for x = 0.2• This is to be expectd. because term is the repulsive oerlap energy that prevents the bonds

* . Lgfromi collapsing. The various symbols are defined below:the electron effective mass in a narrow-gap material is small;
hence, the electron wave functions at rF, are distributed _ is the 'p state correlated term values,4

over many atoms, with the result that alloy scattering rates VI t- Il - (t 60 /4 are hopping integrals
are small at the band edge. The hole mobilities are large for a between two adjacent bonds coupled through a {,}
somewhat different reason: The valence band edge is mostly C', are the {'',}s state correlated term values,

comFosed ofTep states; however, there is also some cation p . - 24.5/d (eV) is the covalent energy,
state contribution. Because thep state energies of Hg and Zn d is the bond length.
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K -eW 2. T.%1 F 1. Correlated term values ;ind hnd encrgtes for three If-V| :()m- I t?
-€ .' , . . /4 are the sp' hybrid energies, punds The epnmental Kind ieneth%. polarity, and metallic contribution .

to the b'nd energy are aIso plotted

Correlated ternm value' ieVi

is the contribution to the reduction ofthe bonding state ener- Atom I P SP

gy c, zalculated by second-order perturbation theory of the Zn - 10 224 -4)20 - 6 24t

bond in question denoted by superscript ol. owing to its in- cd Q.ll - 4 '84 - 5.091

teraction with the three neighboring ii= 1-3) antibonding HS~ - lO.Q46 - 4.,J72 -6.'Qr~~.lTc - IQ t120 - 9.824 -- 12 2..73

states sharing the same { . T" -,17

[,' = ( I -- o /.Bond energie,

ar h a, Comr~lund dfAI' (r, Eallic Vl E,,~i WZnTe 2.64,1 05W;2 - ci.o25 - 0085 " 
"
,."

are the probability amplitudes of finding the cation and an- CdiT 2.SO5 0.710 - 0.4t6 - 0 -44

ion sD'-hvbrid contributions to the bonding and antibonding HgTe 2.77 Ob15 - 0.14 - 0.4O.

states. e.g., - is the probability amplitude of finding the _
cation' hybrid in the bonding state. etc.. 'Reference 12.

a,, V 2 + V is the polarity, The last identity in Eq. (4) defines the indicated bond ten-
sions. Collecting all the results from the earlier paragraphs,.
one finds (dropping the bond designation ni:

°' 2 " " ~ T . Il -- cr, jal -e, - -_15 ,., lal

are the bonding and antibonding one electron energy states
owing only to covalent and ionic interactions, T- T%- =

, _ V:, 1 [ a , ' ''" '
_-a i1.= 1 , v, c_- 5b.

5 - _<i=1.. I[ -ado uJ

are the contributions to the bond in question arising from its a I-' V

antibonding state interactions with a neighbonng bonding" = i 1 - a,,)a,, - 15c)

state i. and ; is an adjustable coefficient chosen so the mea- T "'"
sured bond lengths are reproduced.

Hamson has written Eq. j 1) without explicit reference I+tla 1d
to the surrounding bonds. Equation (1) in its present form is 4 a

rather easily used for alloy calculations by replacing host d C f I .

atom terms by one appropriate to the alloy. Finally combining Eqs. 11)-(5). the bond energy is

The parameter - for each compound is fixed by the E= - 11 +actl;; + VZI

condition that there is no net force on atoms at their equilib-
rium lattice positions. This condition is satisfied if the gradi- 9 1 - a
ent of the total energy with respect to all the bond lengths 8 P i P,') 2

vanishes:

V7d. Er =0. whereE,=NE .".

Equation 6, was first derived by Harrison using a much
The condition is equivalent to the requirement that the net simpler argument.' The bond energies quoted in Table I and
bond tension T, _ -',,, for the nth bond equals the repul- on Fig. 5 are calculated from this expression, using as input
site force the correlated term values from Table I and the experimental..

4bond lengThs.T., - T11 - 0. 121 .. :-
2 bond eng'hs,

B. Alloy calculationsShere':-.-
There are sexeral layers of sophistication that can be used

T, V V--- - 24z t, 1 I :,/d. i3 to compute the bond energy and length changes between
ad, pure compounds and their allo\s. Fl,nwever, all the calcula-

a tions are motivated by the EXAFS experimental result
T_ - N- _ . found first for Ga, In, As and later in other compounds.'

It %as found that. hile the average bond length in the alloy
+ -. -+ .1 141 folloxs Vegard'sruleand %arieshnearly between those ofthe

pure constituents, the indiidual bond lengths of GaAs and *
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InAs are nearly the same as those of the pure materials- "
changing by only about 4%. The shorter GaAs bond in- /
creases its length when it is an impurity in an InAs host by
about 4%. and the longer InAs bond shrinks by about 4% in
the opposite extreme where it is the impurity in GaAs. The
lattice fits together by having the metal sublattice nearly re- A r
tain its fcc structure with a lattice constant following Ve- 1 A13,,1, CONFIGU, ATI

gard's rule. and each As atom adjusts its local position and
accommodates to which metal atoms occupy its four neigh- . .
boring sites. Thus there are five local arrangements: in the '
first an As atom is surrounded by four Ga atoms [a 1 -C,
Gailnioi configuration], in the second there are three Ga _
atoms and one In [a Gai3)lnlli configuration], and the last
three contigurations are Ga21lni2l, Gaililni31. and
Gaoln14l. In a general cation A, _.,B,C alloy or anion
CA, B, alloy, the generalizations are obvious, and one
can examine A4 - 7)BI p;77 = 1,2.3.4 configurations. ,

1. Method I

The lowest level of approximation that takes account of
these findings calculates (from Eqs. (I) and 21] a given .
bond's energy and length shift when its surrounding bonds
have different constituents. The caiculation is done assum-
ing that :he surrounding bonds retain their pure crystal bond
lengths. This model is somewhat unrealistic, in that it ig- *3, ,,1.,MBED, A.VIRTUAL CYFA

nores the strains that must be present to allow the lattice to FIG,. 1. Schematic view of various bond confizurations. fal A01 I configu-
fit together. However, it is nonetheless useful because it ration. bi A21B2! configuratmn. and lci Al3B I configuration embedded
treats :he larget terms, viz. those arising from charge trans- in a virtual crystal.
fer between the substituted species in the alloy, and results in
analytic exrressions, while the successively more complicat-
ed treatments must be done numerically. It is also useful The bond length shifts are found from Eq. (2). The modifica-
later because. taken together with the more complete caicu- tion of these expressions for an anion-substituted alloy fol-
lation,. :t aldws one to judge the relative contribution from lows from symmetry.
different nh', sical effects. From Eq. 11) in a cation-substitut-
ed a!lo. one :an deduce an expression for the energy shift of 2. Method 2
an AC .ond w,,hen 7 surrounding bonds are replaced by BC. A more realistic calculation includes strain and permits
JE; as the lattice to fit together. The simplest non-self-consistent,

near-neighbor version of this calculation proceeds as fol-
JE - lows. In a cation-substituted alloy A_ B, C

- tIBCg_,CdTe o n ,HgTe, the cations are as-

2 U U' (AC) V, sumed to occupy their regular fcc sublattice sites, while the
-e. ACI anions accommodate to their local configuration. The aver-

age lattice constant is taken to follow Vegard's rule:

dO ,J [ U 1 U _BCV, A(
d (I - xI d (A C) + xd,(BC), (9)

where d,, and d ,,BCi are the pure crystal lattice constants.
[ U, l t' (AC)V,_ ] Then in an A3B I1 configuration [see Fig. lhai], the anion

S- ,AC) will be displaced a!ong the BC bond. For definiteness, sup-
posed AC, d 1CI: then the anion N% ill he shifted away from

[ the tetrahcdral site toward the B atom. Because
4 13C - f"d ,,ACI-,,d ,d,;PC, thed BC) bond will be elongated and the

d fAC) bonds will also be localh. elongated in a strained con-
- CLi . 7) figuration. We can for this case [see Fig. Ila)] write

%IACI - " d,PCI= II - 6, (10)

here the pirtial deri'atioe is taken with respect to the cen- and fo~r the three AC bonds
tral bond lengath 1a term desi nated %Ith a superscript f) and
In this simple approximation d2AC6 -----4.5 (11)

J E> 77 E q= 0, 1 2.Ol3. 18 3
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In an A12)B(2) configuration [see Fig. 1(b)], we have for both 1
BC bonds ..

2 __E . .. G1.d1B 5 + 6 2, (
3 3

dtBC) = I-- 3 3-d *(12)

and for both AC bonds* 031-.

(A- AO (13) CONFIGURATI

3 3 "f-.J e ---

The values of ,5 are determined bv the condition dEr/ i,,,, -

=0. or 05 1
T- + 4y"~. 3d,, 0 . (14) 46(

, -o d~ d6 j,
Equation 1141 is solved by

(II Assigning the ys their pure crystal values. ai
121 Supposing that the four tetrahedrally configured an- I

ions are embedded in the virtual crystal [see Fig. l(c]. 09L CdT.

(31 For each x. , is vaned and the bond tensions are ---------------- -- ---- . ... .. .. ..-- -- - - - _ .- _. .." +
calculated and inserted into Eq. (14) until a value of 6 is ,4---- .........--------------. ,: 2

found that satisfies this equation.

The computer outputs are 5 and the AC and BC bond ener- 1" 3 3, ii ' , 019 0 ,
gies. This method can be extended to take explicit account of CST.

the bond ,e::c'th variations of larger clusters, and d can be
calculated explicitly Iinstead of using Vegard's rules so the FIG. 3. Bond energy as a function of concentration x for the Hg ,CJ, Te

results can be made to be self-consistent. Also, effects arising alloy i different configuratios. The short dasned lines are for the CiTe
bonds and the long-short dashed lines represent the behavior of the HgTe

from bond angle distortions can be included. The major ef- bonds. Thesolid linesaretheconcentraton weightedaveragesoftherespec-

fects that are currently included in the calculation arise from tive bond energies.

the bond length dependence of V., and charge shifts driven

by hybrid energy differences and coupled through the metal-
290, lization terms. However. V. is also sensitive to bond angle

Sdistortions, and these effects are not included in the present
results. We expect their inclusion will modify the quantita-
tive results by 10%-30%, but not the trends.

2

COFIGURATION C. Results
"CST.

--/ - - ,,--,, The correlated atomic term values' for the elements in the
-... -.-.... \ more common 1I-VI compounds are listed in Table I, along

-i ............... _ -__-- - -- -I,,c°,l with the bond energies of their nine compounds. The valence---..................- ...........- ,- - ,,, ,C,,,

"+ +-.-. _ ---- - --:,C. s state energies for Zn are large. become smaller as for Cd.
.... ......... - - -_ ...22 ,and then (in an unusual occurrencel the trend reverses and

- - . - - -... .......i " the Hgs levels are deeper again. This is caused by the relativ-
istic terms that become important in Hg. Thep state levels
have a similar trend: however, the differences among the

i- atoms are much smaller. The levels of the anions are deeper
than those of the cations. Thus. there is a net electron trans-
fer from the cattons to the anions. ,htch is responsible for ..'

the ionic contribution to the bonding The polanty. also list. '
ed in Table 1. reflects the relati'e contribution of ionic and

covalent character to the bonds, Notice that ac is small for
ZnTe larger for Cd1"e. and smaller again for tlgTe. By con-

+ .-; 0 4 a 0, trast, the metallic contribution E., is large for ZnTe and
-l2Te and small for CdTe. In fact. H2Te %%ould not be bound

Fit, 2. Don. .engths as a function fconcentration r for the F *Cd, Te iftt were not for the metallic contribution to the bond. not a"" ~ ~ ~ ~ ~ ~ ~ ~ trii FIt, becus Ilnt. ienth as sen Tu'hnocetao o hel,.,T

alloy in diff.:rent conficurations The short dashed line are for the Cdle rrbl surpri:g result, because ltTe is a senimetal. The
bonds and the long-short dashed lines represent the hehasior ci the 1tgTe bond lengths ot CdTc and ligTe are %ery nearly the same.
bonds. but this is an accident resulting from the balance ofcontribu-
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tions to their bonds: CdTe is dominated by the covalent and 1 i 2 341 74%S :W zT? :62 , . : z431_
ionic contributions to its bond, while HgTe has bonds that EV__.1 79 , .:$1 s 98 33 0 10" 121 309 0 40

are mostly covalent and metallic. We should therefore not be 20

too surprised if their alloy displays some unusual bond
length variations.

Figures 2 and 3 illustrate the Hg, _ Cd, Te alloy concen- 1.

tration variations of the length and energy for the five config- 12 I.

" urations. These results were calculated using the second "0 -

method discussed in Sec. 11 B. In Fig. 2 we see the unexpect- s

ed result that the shorter HgTe bond becomes still shorter in 6 I

the alloy, while the CdTe bond length increases. Moreover, 4 '

the changes are large compared to the original length differ- 2 L I""
ence. Thus. one can expect to find local microstrains. even in a -.-_ - ,r--- .- *"
this nearly lattice-matched material. The bond energy varia- ' i -
tions shown in Fig. 3 also display an important result. The A .I_

already weak HgTe bond is destabilized by the presence of A . FI" .!
Cd. The flat concentration variation of the bond lengths and a .,- .-

CdI ThI e
energies is peculiar to HgCdTe: much more structured beha- .10 h -"

viors are exhibited by other compounds. " - -""r

Several considerations to keep in mind when dealing with "- .

alloys are depicted schematically in Fig. 4 for a Hgi3lCd(1) 1

configuration. Due to the charge shift alone, the HgTe bond , . t i i f ! . . .... "-"
shrinks by 0.030 A. the minimum in the configuration dia-
gram moves to a smaller bond length and the depth of the .IB(31 configu-

m m s rations expressed as a percentage of the pure crystal bond energy. The B
well is decreased. Then the bond is stretched by 0.01 1 A to its atom is designated in the line that shows the shift. The pure crystal AC bond

final length. Thus, the bond is not centered at a local mini- energies and lengths are given at the top of the figure. These numbers were
calculated by method I in Sec. 11 B.

0019 mum. For example, this implies that the force constant of
VI . _ local phonon modes will be related to the second derivative0 0 3 . H qT e-,97 of this configuration diagram evaluated at the strained posi-

, 1tion away from the well minimum. This effect is even more
pronounced for materials with a larger lattice mismatch.

, Notice that the CdTe bond is also stretched relative to its

-0 048 local minimum in this configuration.
0 023 0024 H The result for bond energy variations for all the II-VI

H"g Hg compound alloys is gathered in Fig. 5. Here the energy shifts

of an AC bond in a Ail l)B(3) configuration.E' = 3,E J are
T X HgI3)Cdil) presented as a percentage of the pure material bond energy

or for cation substitute alloys along with equivalent results for
H.g. , cd anion substantial alloys, e.g., HgSt , Te,. The energy shifts

are calculated following the first method presented in Sec.
II B. We have not had the opportunity to run all the com-

Vr, pounds following the more sophisticated calculational pro-

2.05 r- T.W cedure. The bond at the top of a column is the one whose
energy shift is calculated. and the other constituent is identi-
fled in the line that indicates the energy shift. A negative

3AEh/E, is destabilizing and a positive one stabilizing. Fo-
cus on HgTe. It is destabilized by CdTe. HgS. and HgSe. but
is stabilize,' bv ZnTe. The CdTe destabilizes the HgTe bond
b- 18% according to the simple calculation and by 15% ,

according to the better one. The difference between Zn and
0344 --------- Cd occurs because in the Cd case there is a net electron trans-

£ fer from the Cd to the Hg, while in the case of Zn there is '
practically no such transfer. These extra transferred elec-

,Ft,, 4 She. iatic picturefa pitentia ,:onfiguration ,!igram For the HTe trons must occupy antibonding states, because the bonding
and CJ'e Sonds in .an lg!3,Cdl , configuration. For the }lgTe bon.d the
eneris and position of the bond center are calculated by method I of Sec. states on the HATe are full, so the net effect (including other

."11 11 ind the inal stretched prsition and energy by method 2. The re',ults energy state shifts) is to destabilize the HgTe bond. This pre-
quoted for the CdTe hond are those determined bh method 2. dicted destabilization of the HgTe bond in HgCdTe alloys

J. Vac. Sci. Techncl. A, Vol. 3, No. 1, Jan/Feb 1985
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cancy formations energies and the melting temperature are

both proportional to the bond energies of the constituents. ,'.
Thus. one would expect the vacancy density just below the

"- melting point to be about the same for all materials with a
-, similar coordination number: in our semiconductor case, the
" coordination number is four. Dislocation energies are most- Ii

ly owing to long-range bond angle distortions9 and accord-
ingly are sensitive to the sheer coefficients, which vary
roughly as d - for many compounds.' Based on this general ,.

GO argument, one would expect to find fewer dislocations in
k

=  .,,materials with short bond lengths.
Dislocations appear in bulk grown materials through a

5001-. ,, Isequence of steps. " We shall only discuss the simplest case, .1

where there are no mechanical stresses on the growing mate-
r rial. In the temperature gradient ehind the growth front,

"," . 1' *b there is usually a supersaturated vacancy content. These ex-
-" cess vacancies may diffuse to surfaces where they do no

harm, or thev may condense into vacancy clusters that can
50 ,000 So0 then organize into dislocation loops. If a loop is not parallel

to the growth front, it can climb toward the front by absorb-

FIG. 6. Theoretical vs experimental hardness. The two values at the top and ing more vacancies. If it climbs faster than the growth pro-
bottom of the vertical lines designated for each compound were .zalculated gresses. then the loop will reach the front. It can then spread
for two different possible dislocation arrangements. The lower one corre- and grow along with the crystal. Observed from the growth
sponds to the minimum energy configuration and the upper one to a likely surface, such a loop will appear to be two edge dislocations.
higher energy configuration. The experimental numbers were taken from Ifahis i loo formationaro be inhiitediany

Ref. 2. If this dislocation formation process can be inhibited in any
of its steps, the resulting material will have fewer disloca-
tions.

agrees with the d state energy shift reported by Spicer etal. at Zn in Zn, Cd, Te or Zn, Hg Te will serve this func-
last year's workshop,' and by the oxygen uptake experi- tion in two ways. The first is that Zn stabilizes the weaker
ments presented by the same group at this conference.' bond in these alloys. accordingly, vacancy formation ener-

gies in the alloy should be larger than those in the pure con-
111. DISLOCATION ENERGIES AND HARDNESS stituent CdTe or HgTe. The melting :emperature will also be

The dislocation energies and hardness of semiconductor raised somewhat: which effect "'wins" is a matter still to be
are calculated by an extension of Harrison's method.' It is decided. The second effect is clear cut: The shorter bond
demonstrated. in agreement with experiment, that disloca- lengths of the ZnTe will introduce stiff struts into the system
tion energies per unit length. depending on the covalency, that will increase the dislocation energies and thus should
are proportional to d -', where d is the bond length and hard- inhibit dislocation loop formation and subsequent climb.
ness is proportional to d - to d - The low powers are for The large dislocation density reduc:tion found by Bell and
pure coalent materials. The hardness is related to the inter- Sen in Zn, -,Cd.Te with only 4% Zn supports this specula-
action energies among dislocations. The detailed theory will tion.ti

be published elsewhere.8
Figure 6 shows the theoretical hardness of several semi- V. CONCLUSIONS

condu. tors plotted against experimental values.2 The theory We have argued that, in an alloy, the bond energies and
.is calcuated for two different dislocation configurations bond lengths are modified from their pure crystal values.

caused by the extra material pushed by the indentor into the Bond energies can be strengthened or weakened in an alloy
crystal. The lower end of each vertical line is a realistic hard- depending on the relative sp3 state energies and the conse-deenin oor the relative and sttthege n tecn
ness for the minimum energy configuration. and the upper quent net electron shift between the constituents. For most
ends of the lines are the values found for a higher-energy compound . the average bond length modifications for each
configuratt: n. In most cases, one would expect real configu- type of bon: arc generally small compared to those suggest-
rations to have hardnesses lying somewher- between these ed by Vega rith experment. How-

two .alues. once the effect of'heat generated 'h the indention .40. d e in eetis ubtaced ro th epermenalnumer. Tts ever, HaCdTe is an exceptional ca-se. because the bond rprocess letgths for HgTe ant Cdl'e are nearly the same iby acci-
theory has no adjustable parameters. Net it predicts the right dent. The bond length and energy shifts also depend sensi-
trends and magnitudes. lively on the local configuration and the bonds are locally

strained. These effects must be taken into consideration in a" IV. NATIVE IMPERFECTIONS GROWN INTO ALLOYS
NC SNproper theory of alloy vacancy formation energies, phonon

There are two kinds of imperfections we shall discuss: va- frequencies, dislocation energies, etc.
canctes and dislocations. At present. the conclusions are ten- The conclusions most relevant to the initial question
tative, because the detailed theory is still incomplete. Va- posed in the introduction are that for the narrow gap allows:

" J. Vac. Scl. Technol. A, Vol. 3, No. 1, Jan/Feb 1985
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Abstract

The objective of this paper is to identify the principal microscopic
phenomena controlling dislocation densities in bulk grown semiconductors.
Then. based on this understanding, a strategy for selecting materials to reduce
dislocation densities is offered. The relevant quantities are calculated from
an extension of Harrison's bonding theory, which, with our improved accuracy
relates properties of the solids to the constituent atoms' valence electron
energy states and wave functions. We retort on the alloy composition varia- A-
tion of bond energies, bond lengths, charge redistribution among constituents,
vacancy formation energies, dislocation energies, and hardness. S.veral
III-V and II-VI compound semiconductors are treated including, GaAs, GaInAs,

HgCdTe, and ZnHgTe.

*. ;.

(a) This work was supported in part by AFOSR Contract F49620-81-KO012 and
DARPA Contract MDA-903-83-C-(] 08.

.t.

(b) Stanford Ascher-an Professor of Engineering -
--. 9

335

-A............................................



_ _

*. Introduction

According to a currently accepted model (1) of the mechanism leading to
dislocations in bulk-grown material at a given temperature and temperature
gradient behind the growth front; their density is governud by:

0 The vacancy density that depends on the formation energies,
* The competition between vacancy annealing rates and vacancy

interaction caused clusters, %b
* The condensation rate of these vacancy clusters into dislocation

loops, and
* The subsequent growth rate of these loops.

The objective of this paper is to identify some of the principal microscopic
phenomena controlling these features in semiconductors compounds and their
pseudobinary alloys. If any of the foregoing steps can be inhibited, then
there will be fewer dislocations in bulk-grown crystals.

A model of the bonding of tetrahedrally coordinated semiconductor com-
pounds due to Harrison underlies this work (2). He has derived expressions
for the bond energies and strain coefficients of pure iemiconductor compounds
in terms of the constituent atom's valence state wave functions and energies.
There are four contributions to the bond energies:

* A covalent energy arising from the interaction between sp
3 
hybrids

on adjacent sites, which, according to a universal rule deduced
by Harrison, is related to the inverse square of the bond length, d,

* An ionic energy which is proportional to the energy difference
between the sp

3 
hybrid energies of the anion and cation,

* A metallic energy arising from the interaction between filled

bonding and unfilled antibonding states on adjacent bonds, and

* An overlap repulsion energy which is taken to vary as d

The shear coefficients, which play an important role in dislocation energies,
are shown to vary for covalent solids as the covalent energy per cell unit
volume or as d

-5
. The ionic energy arising as it does from coulomb inter-

actions, is insensitive to bond angle distortions and depends only on bond

lengths. Thus, in the ionic semiconductors the shear coefficients are reduced
from those of equivalent bond length covalent compounds, but also the Dower
law dependence on bond length increases to d

- 1 
for the extreme ionic limit (3).

The metallic interaction is bond angle sensitive and contributes to the d
-
11

power law.

We have modified Harrison's theory in several ways (3) (4). First.
instead of using atomic term values as the input enerzies in the bonding

calculation we use correlated atomic energies that take account of all the
atomic electronic energy changes associated with a state change. In our prior
publications these energies were calculated from pseudopotentials (3). In
this paoer we have modified the procedure and taken the ground state energies
from free atom ionization experiments, and only calculate the excitation
energies from the pseudonotentlals. Second. the Harrison's theory has been

extenqed to alloys in which each type of tne individual bond's ener'! and
length changes and the net allov substitution energies are calculated. A
theory of dislocation enersies ard haraness of semiconductors has been advanced.(4)
In this paper the 4ec,3nd itea wi:1 be e-nnnasized since item one is less

relevant to this conference and these will be published elsewnere.
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%
Bond Length and Energy Changes in an Alloy ,' 4

Single Impurity

Start by considering the simplest defect, one cation of a host semicon-

ductor compound AC is replaced by an isoelectronic i=purity I, as sketched

in Fig. 1. This will be generalized to an ABI_xCx allov later ans the cation

substituted case A-LxBxC follows by symmetry. To study the principal effect
of core lattice distortions, we allow
the positions of the first shell of
atoms labeled by band length dl to move,
but fix the atoms of the second neigh-
bors and beyond at their pure-crystal
positions. Eventually, the effects of
long range strain fields. generated by
a point distortion, must be added to
this core distortion. Here we allow

d only three different bond length--
dl - (l-6)d, d2 " (1 + 2/36 +62)1/2d.
and d3 - d, where d is the bond length
of the pure host AC compound, and 6 is

a scale parameter.

There are four bonds with energy

wEl, telve with energy E2 , and 3b with
energy E3. These energies can be ":.,

Schematic representation of the written in closed form in the Harrison -e
bonds around an atom of interest theory. The energies El and E, differ

(designated by the square). The from the host bond energy E. becau-se 1

first, second, and third neigh- of bond length and angle distortions

bar bonds are designated d., d2, as well as diffcrence in the ionic

and d3  energy of I and C atom induced charge
transfer. The energy E3 differs from
Eo only by the charge transfer coupled
through the metallization ternai. There

are two interesting energies we can calculate. The first is the energy L.
required to substitute the I atom for a C atom, i.e. bring a free I atom from
infinity and replace a C atom that is taken from the crystal and removed to

infinity.

As 1
4 ZE

I + 12,AE2 + 
36

AE 3 - (C - (1)

where E. - E. E 1,2,3. and C and c are the free atom valence elec-

tron binding Lnerges. The second is the bond energy change of the impurity
AI bond relative to the bond energy of a pure AI compound, denoted L "

161 a- &
E
, (c, - ec)()

This energy tells us if the AI bond is stabilized ( < 0) or destabilized
(A > 0) when it is in an AC host. If we define Ab as the bond energy dif-

ference between the IA and CA bonds each in their respective pure crystals

,b F_ BE(IA) - BE(CA) (3)

then one can write

Ls 4'b + t..c (4)

where ts is extra energy difference caused by strain and charge transfer.
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The energyes E and bond lengths d J = 1, 2,3. are calculated by mini-
mizing Ls. If we l~t dT z do (- 6o ) 4here dT is the bond length in the
pure Al lattice, then the approximate expression

60 (5)
8(CII - C12)

3 31 27 BI  + (small terms due to charge transfer)

can be deduced. The bulk modulii B of the host and B1 of the impurity lattices,
and a shear coefficient CII - Cl- of the host appear in the expression. While
this expression is approximate, the effects of the various types of strains
can be visualized using it. Our detailed calculations are done using the full
theory. If one fixes the bond lengths dl - d d - do, then 6 - 5 and the
strain energy Asc is large and positive. If one allows only bond length dis-

tortions (C11 - C12 - 0) then 6 is reduced and the bonds tend to adjust so
d- dl. This reduces Asc considerably from the undistorted lattice case.
If dI > do then both bonds are stretched somewhat, d, - dI > 0 and d - do > 0.
However, this configuration produces large bond angle distortions. When the
shear coefficients are turned on the lattice relaxation is modified and the
bond lengths cannot adjust as much, so d, differs from di by a larger amount.
The net result is that Asc is increased since one pays the price of strain
energy either as a bond length or bond angle distortion. a

If we calculate 6 from the full theory, then we predict values that are

too large. This occurs because the theory predicts CII - C1 2 which agree well
with experiment but it predicts bulk modulii with the proper trends from one
compound to mnother but which are sbout a factor of 2.4 too small. If we use

the experimental values of the strain coefficients in Eq. (5) then good agree-
ment is found with the experiments (5) on Gal_xmnxAS and ZnSel-x.ex. The
results are quoted in Table 1.

Table I. Bond Lengths in A for Impurities in the Indicated ost

Ga in InAs In in GaAs Se in ZnTe Te in Zr.Se

Experiment 2.487 2.587 2.496 2.595

Eq.(5) and 2.499 2.547 2.510 2.570

experimental B&C

Full Theory 2.538 2.518 2.570 2.512

Alloy

In an AI ,BC alloy the four cations around a given C anion can be
arranged in fve different configurations, denoted by A(4-), 3(7), 0,1.
2,3.4. An A(2) B(2) configuration, for example, is one in which the C atom
has two A atom and two B atom neighbors. It is possible to solve the full
alloy problem for larce clusters, but for now we have restricted the cluster
to near nelghoors only, and in Fig, 1 the central atom is now an anion C and
d, d3 - defz are taken to be an effective medium bond length that is deter-
mined self-cnsistently. The different ,,nds of tvpe I no lonrer have the
same lengtn. The procedure is as follcws: First assume a value for deff,
iay the vir:ual crvstal bonod length (l-x d i xd 'b( ). Nxt calculate
the d, values for tne ':,iotns confiuriticnsov ',n: Imin too energy of the -
con rit . n. lh, ~. i rc: i i'n iveraZ the varImous a values to find a
new def f. ~Lhn i:.,rL ;-rocudure urtil it converges.
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Figure 2: Bond length (a) and energy (b) of Gaf to nA.
as functions of x. The dashed curves are the average values
for the designated bonds, and the solid curved are the all bd
averages.

Because the bond angle distortion terms are unphsically large we have left
them out of the present calculation. Hence band lengch shifts wrIl be some-
wIhat too small. ser-

*iResults for the bond energy and bond length shifts with concentration are
given for Ga1..1In" in Fig. 2 and 31,n in Fi.3 as examples of two

* different behavior patterns. The predicted trends for GatnAs agree with

experiment but the bond length changes are too small as expected with the bond
angle distortion terms absent. Notice zhat the longer bond in this case de-

* creases in length and the shorter one increases as expected. However, in the
* BInP case the charge shift terms are so large that the longer rn.? bond has a

minimum as a fucntion of composition rather than a monotonic decrease. Be-
cause of the large bond length difference between BP and InP there is probably
a missability gap in this alloy that prevents these compositions from being

prepared. Bowever, one may be able to examine the variation of the anomalous
behavior of the InP bond in a BP host (x << 1).

The Hgl_,Cd.Te system is completely anamolous. The bond lengths of CdTe
(2.805 A) and HgTe (2.797,i) are nearly the same by an accident. CdTe bonds
are dominated by covalent and ionic interactions, while HgTe is more covalent
and the metallic terms are important. The mix of interactions in the two
cases leads to the same bond lengths. When an alloy is made the charge shift

terms dominate, and they cause the longer CdTe bond to become still longer and

the HgTe to contract by amounts that are large compared to the pure crystal
difference. Moreover, the already weak HgTe has its bond energy reduced still
more by the presence of Cd. Since the melting point of HgTe increases as Cd
is added and the local strength of HgTe bonds adjacent to a Cd decrease,
vacancy densities will i:crease. All these and other observed phenomena are

predicted by the theory. A complete catalog of results requires more pages
than we have been allocated in this article, but we have tried to offer a

representative group.
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Figure 3: Bond length (a) and energy (b) of Sl_,InxP as

functions of x. The dashed curves are the aroraRe values

for the designated bonds and the solid curves are the alloy

averages.

Conclusions

We have demonstrated in agreement with experiment that dislocation energies

and hardness of semiconductors are proportional to the shear coefficients which

vary roughly as d
- 9

. Thus to decrease dislocations in a given semiconductor

one should inhibit their formation by Introducing some means of shortening

bonds. This should be accomplished without also decreasing the ratio of the

vacancy formation energy to the melt temperature. While detailed calculations

to support the following contentions are still incomplete, a set of criteria

on an impurity (denoted I) in a host semiconductor (denoted H) that are likely

to satisfy these conditions are: the bond length of the impurity is smaller

than that of the nost dl < d". the smaller bond energy Is stabilized in the

alloy min jEbH, &E511 < . In these circumstances, the average bond length

will shrin and in tne viciyity of each impurity the four surrounding bonds

nearly have the length of the impurity but are stretched slightly. The next

neighboring host bonds are also stretched. The net effect is an arrangement in

which is more rigid than the unperturbed lattice and consequently the local

shear strain energy increases, causing dislocation energies to increase.

Examples of this case are B1 ,xC, ax As, and Znl-xHgxTe. Both B in GaAs (6) and

Zn in HgTe (7) have proven to be effective in reducing dislocation densities.

Unfortunately, B has a low solubility in GaAs and it in not clear that enough

can be gotten in to make it easy to prepare dislocation-free material.

A second case where an improvement occurs is if d, > dH. and again

min IEbH , tEbl > 0. In this case each of the four longer impurity atom

bonds are compresed by the surrounding host bonds and, more Importantly, the

twelve next neighbor host bonds are aiso c'Jmpressed. Once again for small

impurity concentrations the net dislocation energy should be increased. How-

ever, in this case tie effect is compcting .,'.-inst a net bend lengthening

trend of the alloy Whizh is tending to make it less rigid against a shear, so

at higher concentrations the mecr.anism should cease to function. An example
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of this case is Ga!_,InkS, where In has proven to be effective in dislocation

recuction of GaAs

We have demonstrated that our modification of the Harrison bonding theory 
%

accruately predicts the observed change of bond lengths in semiconductor alloys

and offers guidance to means for dislocation reduction.
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SEMICONDUCTOR ALLOYS: LOCAL BOND LENGTHS,
MIXING ENTHALPIES, AND MICROCLUSTERS

A.B. CHEN* AND A. SIIERt
*Physics Department, Auburn University, AL 36849
tSRI International, Menlo Park, CA 94025

ABSTRACT

Several recent theoretical studies of the local structure of semiconductor alloys are
summarized. First, dilute limit calculations of local bond lengths and mixing enthalpies
are discussed. These calculations include effects due to both bond length and bond-
angle distortions, as well as local chemical rearrangements. Then, a new statistical
theory of concentrated alloys is described. Deviations from random alloy distributions
(microclusters) are predicted.

INTRODUCTION

This paper summarizes our recent theoretical studies directed toward understand-
ing the microscopic structures of pseudo-binary semiconductor alloys AxBl-C. We first
present a detailed calculation of the local bond length relaxation in the dilute limit

x - 0, i.e. the case where an A atom is substituted for a B atom in a BC compound.
The mixing enthalpy parameter f0 is found to be related to small excess substitution
energies. These excess energies are calculated directly through a minimization pro-
cedure. Thus, the accuracy of the predicted f0 is not limited by trying to find small
differences between large numbers. The theory is then generalized to concentrated
alloys using statistics based on combinations of tetrahedral clusters of five atoms. Our
results predict that microclustering occurs in a majority of alloys. \Ve conclude by iden-
tifying systematic correlations between the theory and several experiments.

Before discussing the calculation, it is useful to provide some background about
the structure of these alloys. It was customary to assume that these alloys have two
sublattices in which the C atoms occupy one sublattice, and A and B atoms are ran-
domly distributed on the other. This picture, referred to as the virtual crystal approxi-
mation (VCA), implies that the nearest-neighbor (nn) bond lengths in the alloy are the
concentration weighed average values, i.e. dAc dBC d = x d,0 + (l-x) dAV where
the values with a superscript (0) denote the pure-crystal values. On the other hand.
according to Pauling's covalent radii approximation (CRA), the local bond lengths
retain their respective pure-crystal values, i.e. dAC - dfJ and dBc =de

If we define 60 = (d - dACJ) / d and 6 - (d- dAc) / d, then the ratio 6/60 in VCA
is zero, but in CRA it is 1. However, Mikkelsen and Boyce(') found from their EX:FS
experiment on GaxlnlxAs that the nn bond lengths do not fit either VCA or CRA.

'. Instead. they found the value of 6/6 to be close to 3/4. Since then, similar experiments
have been done for a number of zinc-blende pseudo-binary alloys.(0) and the 3/I rule
appears to be quite general.

At c._
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DILUTE LIMIT

The dilute limit is the easiest case but is still not trivial. Its solution provides

both end-point results (x = 0 and 1), as well as insight into the extension to the concen-
trated alloy case. A complete description of this case is being reported elsewhere; here
we summarize the essential results. The substitution energy A. for an A atom replacing
a B atom in a BC compound is calculated and minimized to find the relaxed--
configuration. A. can be written as A. = 4 (AE b + AE, + AEch), where AEb is the
binding energy difference between the AC and BC compounds, AE, is the strain energy,
and AEch is a chemical energy shift. All AE' s are energies per bond. Then,
AE = AE, + AEch is the excess energy per bond for the impurity substitution. AE, is

calculated by dividing the crystal into two regions. Outside R (which is the distance of
the second-shell atoms to the impurity), the distorted crystal is treated as an elastic con-
tinuum with a radial displacement field which is inversely proportional to the square of
the radial distance, so AE( ° ut) = 1/4RCu 2, where C is an effective shear coefficient,

C = 7r (1.6 (C 1 - C12) + 4.8 C44), (1)

and u is the magnitude of the displacement at R. Inside R, the strain energy A(n) is-
treated with a valence force field (VFF).(2) Finally, the chemical energy shift AECh is cal-
culated from Harrison's model and arises from changes in the metalization energies
caused by different bond lengths Ad dBC - dAc and covalent energies
AV 3 = V3(AC) - V3(BC). Note that 6o  (d& ? - dJ) / d& and
6 - (de9° - dAc) / ded in this dilute limit, so the excess energy AE can be expanded up
to second order in 6, u, and AV 3 For a given pair A and B, AE is an explicit function of
6 and u. Minimization of AE with respect to 6 and U leads to the equilibrium local
bond length dAc and energy AE. Then, AE is used to estimate the mixing enthalpy
parameter Q- in the mixing enthalpy All = x(1-x)f2 by .21.

= 2 (AE (A in BC) + AE (B in AC)). (2)

A systematic comparison with other models based on strain energy alone shows
that an increase of the range of the fixed boundary R increases the relaxation of dAc, i.e.

it causes 6/60 to increase. The inclusion of the bond angle restoring force, on the other
hand, reduces the relaxation. It turns out that a delicate cancellation of these two
effects causes a simple spring model pointed out by Shih et al. (SSIIS)( 3) to yield accu-
rate results. In this model 6 = 6o / (1 + 1/3 a/al), where a and al are the bond-
stretching force constants for the host (BC) and the impurity (AC) crystals. 'With
a - al, this model predicts 6 = 3/460 for a zinc-blende alloy. Although our full pertur-
bation theory (FPT) and the VFF model of Martin and Zunger (MZ)( 4 ) predict dAc with
an average absolute deviation comparable to the experimental uncertainty of 0.01A. the L
simple spring model is even better.

\Ve note that while in our theory, MZ and SSIIS. the 0 values are directly cah'i--
lated without any adjustable parameters, our theory and SSIIS agree with the experi-
tnent as well or even slightly better than the one-parameter theories.(06) Although our

theory predicts a negative Q value for all three (Ga. Al) alloys, the nmaguitudle
(Q -0.17 kcal/mole) is too small to account for the ordering of G ,,\i As grown at
600 to 700'C found recently. (7) The calculated 0 values also provide guidance in
separating miscible from immiscible alloys. In a random alloy, the criterion for alloy
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mixing for all x is T > T, where the critical temperature T is given by Tc Q/211
vith Rg being the universal gas constant. Figure 1 is a plot of T/T 2 against r
601 / ,6 where T2 is the lower of the two constituent's melting temperatures, and

6m = 1•6 3'(m with Xm being the ratio of rms bond length amplitude fluctuation to the
bond length at T0 . The simple spring model gives Tc/T 2 = I/m) as indicated by the
solid curves. -

There is an empirical rule stating that a miscibility gap will occur if 0I
between two alloy components exceeds 7.5%. However, if To/T 2 is plotted against

60I , the simple spring model would not exhibit a smooth simple quadratic curve, and
our theoretical points would be much more scattered. This suggests that

II/ I m I > I is a better criterion than 60 1 > 0.075. Figure 2 also clearly shows
the chemical effects, namely negative and positive chemical energies AECh for cation and
anion substitutions respectively. The full theory and the experiments correlate within
the experimental uncertainties. The simple SSIIS model clearly is an excellent universal
representation. However, T,/T0, varies faster than quadratically for larger [60/ 6m I
values, as born out from both the experimental data and the full theory.

CONCENTIUN.TED ALLOYS

Turn now to the concentrated alloy case. First, an improved statistical model is
required. We have extended regular solution theory based on pair energies to one for
five-atom clusters. For an AB_C alloy, the building blocks are clusters of
A(m)B(.l-m)C, where m ranges from 0 to 4. For a given alloy concentration x and for a
given set of energies cm associated with these clusters, we have derived expressions for
the cluster population distribution xm = Wm / N, where N is the total number of unit
cells and iRn is the averaged number of cells with A(m)B(4-m)C clusters. The partition
function Z is obtained using a steepest descents argument which then yields the mixing
Helmhotz free energy AF. The result reduces to Guggenheim's tetrahedron case(7) if
pair potentials (for the second-neighbors) are assumed. Another major difference is that
we only need to solve a single quartic equation, while Guggenheim needed to solve four
simultaneous quartic equations.

The key to the problem, however, lies in the calculation of the energies em" If one
assumes that the size of the tetrahedra for all m-clusters at a given alloy concentration
takes on the corresponding VCA values but allows the central C atom to relax, then the
energies as functions of x behave like those shown in Figure 2(a). There are at least two
major flaws in this result. First, the energies are too large and would correspond to f2
values many times the experimental values. Second, at x = 0.75, 0.5, and 0.2, these
energies imply compound formation for A3 BIC 4, A B.,C 4, and AIB 3C 4, respectively,
which is opposite to the known tendency for spinodal decomposition of GalnlxAs at
low T. However, if the local cell volume of each cluster is allowed to be in mechanical
equilibrium with a continuous medium with an effective shear coefficient
C = xC + (l-x) CWJ, where the C value for the pure material is given by Eq. (1),
then, the corresponding energies E, ,s a function of x are given in Figure 2(b). which
now yields a reasonable value of nixing enthalpy and correctly predicts the tendency
toward spinodal decomposition at low tenperature. \Vith this set of energies. one (can

then calculate the cluster distribution xm, and compnre themN with the corresponding
values for a random alloy, i.e. xn° -- (I0)xm(I-x)' m. Figure 3 shows the deviation
from randomness Axm xm X (0) as a function of x for four arbitrarily chosen growth

3
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temperatures. It shows that AXm can be several percent at ordinary growth tempera-
tures and there are deviations from the symmetric behavior about x = 1/2 predicted by
the pair energy model..I.

It is also interesting to examine the sets of bond lengths d W and d() correspond-

ing to the f. values of Figure 2(b). The spread in the d values among different clusters,.
is found to lie within the width of EXAFS lines.

The existence of microclusters, whose populations deviate from those of a random
alloy, will impact on many experimental results. These include phase diagrams, EXAFS-.
line positions and widths, magnetic quadruple splittings, modulation spectroscopy "
widths, Raman frequencies and intensities for different modes, etc. We have demon-
strated that the theory agrees with EXAFS and measured mixing enthalpy parameters.
It should be tested against more experiments to further our understanding of the struc-
tural properties of semiconductor alloys.
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SEMICONDUCTOR PSEUDO-BINARY ALLOYS:

BOND-LENGTH RELAXATION AND MIXING ENTHALPIES

A.-B. Chen, Physics Department
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A. Sher, SRI International

Menlo Park, California 94025

Harrison's bonding theory, the valence force field (VFF), and an

elastic continuum are combined to study the substitution energies A and
5

local bond lengths dI of isoelectronic impurities in semiconductors.

Explicit expressions for A and d are derived, which enable us to absorb

measured elastic constants into the calculation and to study the chemical

effects arising from differences in the covalent radii and polarities.

Several models based on VFF alone are also derived for comparison. The full

theory and at least five VFF models are found to produce impurity bond

lengths in excellent agreement with experiment. The substitution energies

are shown to provide good estimates of the mixing enthalpies fa of pseudo-

binary alloys and to predict miscibility gaps properly. The chemical shifts

in Q are found to be negative for most cation alloys but positive for anion

substitutions.
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I INTRODUCTION

The discovery of a bimodal distribution of the nearest-neighbor bond

lengths in Ga xIn 1xAs has sparked considerable interest in the bonding

2-6nature of semiconductor alloys. This finding has changed the

conventional picture of the alloy crystal bond configuration, which has far-

reaching implications about the electronic structure, structural stability,

and thermodynamics of these materials. Because of the complexity of both

the structural and the potential disorder In these alloys, ab-initio band- a

structure techniques have not yet evolved to a stage suitable for direct

calculations. Therefore, we have extended Harrison's bonding theory7 to

study the alloy structural properties.5' In this paper, we apply an

intermediate version of the theory to the dilute-limit case of an

isoelectronic impurity.

A particularly useful application of the theory is its perturbation-

expansion form, in which measured elastic constants are incorporated to

obtain accurate results. This form is also useful for comparison with other

previously published models3'' that are based on the valence force field

10CYFF)l model alone. Thus, all the factors influencing bond-length

relaxation, e.g. strains, boundary conditions, and chemical effects, can be

studied. The ability to incorporate the chemical effects is one major

difference between this theory and other VFF models.

2
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The rest of the paper contains the following sections: Section II

describes a theory for calculating impurity substitution energies. Section

III casts the theory into perturbation form and combines it with a valence

force field and an elastic continuum. Several VFF models are derived in

Section IV. The modifications of numerical results due to chemical effects

on local bond lengths and alloy mixing enthalpies are summarized and

discussed in Section V. Conclusions are drawn in the last section, Sec-

tion VI.

II. IMPURITY SUBSTITUTION ENERGY

Consider the problem of substituting an isoelectronic atom A for a B

atom in a zinc-blende compound BC (e.g., In substitutes for Ga in GaAs, as

shown in Figure 1). In general, the bond lengths d,, d 2, d 3 . for the(

first-, second-, and third-shell bonds surrounding the impurity are

different from the equilibrium values of either the pure BC compound,

denoted as d, or the "impurity" compound AC, denoted as d I= d (1-6 0). If A

starts being a free atom, and B also ends being a free atom, then the energy

difference between the final and initial states is defined as the

substitution energy and is given by

As (Edef+ B )-(E pue E (A

3
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Fig. 1. A sketch of the flatted picture of a single impurity A

in a BC compound. The positions and displacements for

those atoms labeled are used in Appendix B. .
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where cA and cB are free-atom energies for A and B respectively, Edef is the "

total energy of the semiconductor with a defect as sketched in Figure 1, and

E is that of the pure host BC crystal. Equation (1) can be written as
pure

-L,

As -(E -E )-(c-E )+(E -E )
def dis A B dis pure

SAR (EA-¢B)+Adis, (2) 1

where we have added and substracted a term E dis, which is the total energy

of a distorted BC compound with all the atoms held at the positions

specified in Figure 1, except the central atom is a B atom. Clearly, AR .

Edef-Edis is a replacement energy, and the distortion energy Adis =

E -E is the energy required to deform a pure BC crystal from its
dis pure

equilibrium lattice to that specified in Figure 1. AR contains all the

chemical terms that arise from different bond lengths and polarities between

AC and BC bonds.

aR can be treated most easily by Harrison's bonding theory. In this

theory, the energy per bond relative to the vacuum state is

+ -.

Eb 2 b+V +6E +6Em '  (3)
b bo0 m m

where Lb is the energy of the bonding state constructed from the two hybrid

orbitals facing each other along the bond direction

5);:

........................................ !.. .
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A C 2 2 2)
Sb -1/2 (Ch +Ch)(V2+V) (4)

A Cwith h and h being the energies of the anion and cation hybrids orbitals

respectively. The antibonding energy Ea has the same form as in Eq.(4)

except with a plus sign. V is called the covalent energy, which is the
2

total electronic Hamiltonian matrix element between the two hybrids in

question, and the polar energy V3 is the difference V3 1/2 h The

C and E the metallization energies, are the shifts of the bondingm m '-'-

level caused by interactions with the neighboring anti-bonding states, where

+ and - indicate whether the common adjacent atom is a cation or anion. For

example, this term for an AC bond labeled by dI in Fig. 1 due to an

antibonding state labeled by d2 is given by

(2

BA 1) (112U 2 C12/ A( B(5
c(2,1 (ucn 2  ) 1 IViE _E)- (2)],(5
mC b b a 1 b a

where A and B denote AC and BC bonds respectively, V1  1/4J (e~ -C ) with
C C
C and c being the s- and p- term values of the common adjacent atom C.

sp

U A(1) is the probability amplitude of finding an electron in the hybridb

orbital of the C atom in the bonding state of an AC bond with a bond length

Bdi whereas U (2) is the corresponding probability amplitude for the
1' a

...-

antibonding state of a BC bond of bond length dl Finally V is a repulsive2c 0

s p ,.

paria poftea o rq ie tohrentnding ystae ofro Acbollaping abnd to gh '

, ~guarantee a correct equilibrium bond length. i

6 .



The local perturbation, Eq.(5), is applicable, because the square root -

of the numerator is much smaller than the separation between the anti-

bonding and bonding levels, and the valence band is completely filled, so

the interaction between the bonding states only spreads the Eb levels into

bands without affecting the center of gravity of the occupied states.

The replacement energy AR of Eq.(2) can now be written explicitly:

A A .AAB

AR 41 2 E (A)+V (1)+6c 'A(l,1)+
6E CA(2 ,1)o mA mC

b 0 mB mC

+6CA,B (1,2)-6 BmC(1,2)]. (6)

The distortion energy Adis of Eq.(2) now involves only BC bonds of different

bond lengths. It can be treated with exactly the same procedure for any

given set of bond-length distributions. Thus, a straightforward energy

minimization procedure can be carried out. The accuracy of this procedure,

however, depends in turn on the accuracy of scaling rules for V and V and
2 o

7 2
the input parameters. At present, Harrison's model with V l/d and V

2 0

1/d and his universal parameters are only semi-quantitative. We are

improving the quantitative nature of the theory so that the full theory will

yield accurate predictions of the structural and thermal properties of

semiconductor defects and alloys.
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.: III. PERTURBATION EXPANSION, VALENCE FORCE FIELD, AND ELASTIC MEDIUM i

As pointed out earlier, a perturbation expansion of the theory is..

,L-instructive. This is feasible because the differences AV 2 - V 2(AC)-V 2(BC). ""

I.'

and AV 3 - V3(AC)-V 3(BC) are small compared to each individual value for many .-

-S-

Afthspoined t eartie a n petrI on xan ioons the theryis ed

Eq.(6) is rewritten as

A B BAAA(1]

(1/4)AR E b(1)-E (1)+6[cBS( 2 ,1)-c 1,)
R b b m C M C

B:B1 B: (7)
-6[cmC(1,2)-c mC(2,2)],

where EbA(1) and EB (1) are energies per bond in Eq.(3) for AC and BC

compounds respectively, with the relaxed bond length d1 - d (1-6). The

difference between these energies E and the corresponding values at their
b

respective equilibrium bond lengths dI  and d are just the strain energies

per bond in uniform deformation:

Eb (1) Eb (di )+2rF BIdi(dl-d2

B B 2
E (1) - EB(d)*2 r3 Bd(d -d),  (8)

8
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where B1 and B are the bulk moduli for the "impurity" AC and host BC(

crystals. The rest of the terms in Eq.(7 are all due to changes ine

caused by the differences AV 3and A *We shall use Harrison's scaling

rules to deduce them.' Expanding Eq.(7) to second order in AV and Ad

d 2-d,, we write

6BA( fA:A(1 ') 2

C :'21- mf ~1 =fAd-g 1 AV +h (Ad)

2

where fit gig and so on, are appropriate derivatives evaluated for the

"impurity" crystal AC. When similar expansions are made for the rest of the

terms in Eq.C7, it becomes [with d = d(1-6), d( (-

(1/4i)AR AE +(f1 f)Ad-(g1-g)AV +(h1 +h)(Ad)
2

-(W +W) AdA 2( U)A

+2/3B d (6-6) 2r3 Bd 6 (10

where

A B
AE =E (d )-E (d)-(1/4)(c ~E) 6

b b I b AB (1

9
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( is just the difference in the binding energy per bond between the "BC" and

"AC"* crystals. In Eq.(10), the coefficients f, g, without a subscript are r

those for the host BC system. It is convenient to define an excess energy U
AE - As/4-AEb , which is the extra energy per bond required for the impurity

substitution over and above the binding energy difference between the BC and

AC crystals. The binding energy difference accounts for much of the

substitution energy; however, the correction measured by the excess energy

can be significant. The excess energy results from strain energies and

chemically driven charge redistributions around the defect. Using Eqs.(2)

and (10) and defining F = f -f and G = gi-g, we can write AE up to secondIi
order in AV and Ad as

AE 2/3 Bid 3(6- 0 )
2-2r Bd3 2 +FAd-GAV 3

+H(Ad) +WAdAV 3+U (AV3 +(/4)Adis' (12)

where H - h + h, W= wI + w, and U = uI + U.

To treat the distortion energy Adis, we divide the crystal into two

regions. Inside a sphere of some radius R measured from the impurity, the

strain energy is taken to be the valence force field value:

(in) 3 2

=A- ciA(d *d- )J - 8 [A(i j)] (13)Adis 8 2  8 2  .> i j

10
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where i sums over all the bonds inside R, and the pairs in the 8-terms

include those that have adjacent atoms inside R and on the boundary. The

parameters a and a are force constants to be considered later. A(d.dj)

(0) 0)
di d-4i dO measures the change of the dot product between bond vectors

due to distortions. Outside R, we assume an elastic continuum with radial WE"

displacements inversely proportional to the square of the distance from the

center. The elastic energy in this medium can be shown to be (see

Appendix A)

(out) - RCu 2  (14)
A -~
dis

where the effective shear coefficient is C = 4[O.4(C1 1 -C12 )+1.2 C44] and u ( ,

is the displacement at R. In view of the fact that the bonds d and d are

1 2

coupled through the chemical terms in Eq.(10), the smallest logical radius R

is the second-shell atomic distance, namely R = 22d/Yr3. Atoms on this

boundary have displacements of the forms u = d(Y,Y,o)/V .... Thus, u = /2

Y d/v' and the elastic energy in the continuum is

(out) -Y d 3 . (15)
dis 3

The distortion energy represented by Eq.(1) contains six different

contributions (see Appendix B): the bond-stretching energy of the four

first-shell bonds, 6a62 d 2 the B-terms from the first-shell bonds, 86 2d2,



2 2the a-terms from the second-shell bonds, 2a(6+2Y) d the $-terms between

the first-and second-shell bonds, 20(6+Y) 2d 2 , the 8-terms among the second-

2 2shell bonds 2B6 d , and finally the 8-terms between the second-shell bonds

and those in the continuum, (1/2)8d [(36+X y)+(6+x , where X
1 2~Y)J 1

40 ,f7/(19 /T) and X2 - 2-40 '2/(11 I).

To assemble all the contributions to Eq.(12), we need to consider the

assignments of the elastic constants and the force constants a and 8 in

VFF. While the experimental values of C11 C 12 and C44 can be used for

the elastic constants, a and 8 have to be deduced. If Martin's original

procedure 10 (also followed by Martins and Zunger 3 ) is used, then Eq.(13)

alone will not produce the correct (experimental) bulk moduli. There are

small corrections due to Madelung terms, which are hard to treat in the case -.

(f of non-uniform distortions. A simpler procedure is adopted here. We use

the experimental bulk moduli for B and B in Eq.(12) and experimental
I

elastic constants to calculate C of Eq.(14), and then force a and 8 in the

VFF to produce the correct bulk moduli B and shear coefficients C 11-C12

Such an approach is also consistent with Harrison's bonding theory7 and

other approaches in which the Coulomb forces are automatically incorporated

in the band and bond energies, and do not need to be redundantly treated.

With our procedure, the bulk modulus is simply related to the force

constants by B = (3a + 8)/(4VId). Table 1 lists our a and 8 values. We

want to point out in advance, however, that the numerical results deduced

from our and Martin's sets of a and B do not introduce differences more

than the present experimental uncertainties in the local bond length

.- O.01A) and the mixing enthalpies (> 0.5 kcal/mole).

C 12

•. ...



Table 1. The bond lengths d (in A, valence force constants a and a (in N/rn),
shear coef ficients C of the continuum (in 1011 erg/ cm3 ),
melting temperatures Tm(K), and Liedermann ratios Xm for the
compounds used in this paper.

Compound d- a ___T__ CXm-

AlP 2.367 44.323 8.068 122.396 1773 0.070

AlAs 2.451 40.849 8.717- 112.695 1873 0.073

AlSb 2.656 34.073 6.900 85.351 1323 0.062

GaP 2.360 44.764. 10.737 145.921 1510 0.064

GaAs 2.448 39.235 9.159 121.844 1738 0.071

GaSb 2.640 31.876 7.347 89.372 985 0.055

InP 2.541 40.363 6.543 91.785 1343 0.059

InAs 2.622 33.203 5.752 78.816 1215 0.061

InSb 2.805 28.557 4.891 60.721 798 0.049

ZnS 2.342 40.429 5.273 89.272 2123 0.081

ZnSe 2.454 32.200 4.562 82.687 1788 0.080

ZnTe 2.637 29.445 4.659 62.430 1511 0.071

CdTe 2.806 26.569 2.722 38.453 1371 0.067

HgTe 2.798 26.396 2.746 40.363 943 0.056

Ref. 30
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(Using the above procedure and adding all contributions, the excess

energy per bond from Eqs.(10) and (12) is the full perturbation theory (FPT)

result

AE 13aI(6_60)2 /2+61(6-6) 2/2 +a(6+2y) 2/2

2 2 2 2 2
+B(6+y)2/2+B62/4+B(36+l Y ) 2/ 8 + B (S+ x2 Y ) 2/ 4 1d 2  

[ i[

+ r2 CY2 d3/(33)+AEch, (16)

where the chemical contribution is written as

AE = F hAd+H(Ad)2 +AE p  22 2ch c

2 (26+Y)d+9 H(26+)2 d +(UAVi -GAV3) (17) t..
3ch 9 3 3

where AF = F-WAV and AEp UAV 2-GAV . F is a chemical force, which,
ch 3 p 3 3* ch

when it is positive, tends to push the C atom away from the impurity atom A.

This force arises from the difference in the bond tensions induced between

the AC and BC bonds adjacent to C because the neighboring anti-binding

states are different from those of their respective host states. AE is due

to the difference in the polarities AV alone and is independent of the
3

displacement. Finally H can be regarded as a chemically induced force

14
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constant which, when it is positive, tends to restrain the lattice from ( wo

distortion and increases the elastic energy.

The equilibrium requirements, a(AE)/a6 = 0 and 3(AE)/8Y 0 0, then lead S..

to the solution Y = Q6, and 6 is given by

*" -

6- (6+ 6o)/{I+[a(I-2Q)+B(17/4-AQ)+16H(1-2Q)/9]/(3aI+8 I)}. (18)

where the constant X is 1+3X1/
4+x2/2, and

6' = -4F h(1-Q/2)/[3d(3a +a )], (19) (

with Q = 2J/K, J = a+XB/2+8H/9, and K

2 2
= 4a+2yr2Cd/(3V7)+(l+ /14+x12)8+8H/9.-

1 2

IV. VALENCE FORCE FIELD MODELS

In this section we consider several models based on the valence force

field (VFF). These models have been used frequently to explain the impurity

15



bond relaxation 3 We shall first derive the explicit expressions for

these models and then connect them with the existing results.

Positions

Let the bond lengths surrounding the impurity again be d = d(1-6)

and let the second-shell atoms have radial displacements of the forms (d/,/3)

(Y,Y,o) etc. Beyond and including the third-shell, all the other atoms are

held at their pure-crystal positions. There are nine different contribu-

butions to the strain energy in VFF (see Appendix B): the a-terms from the

four bonds surrounding the impurity: 6a (6-6o)2d2, the B-terms among the six

pairs of these bonds, Bit~-o) 2d2 , the B-terms between the first-shell and

second-shell bonds, 2B(6+Y) d the -terms from the second-shell bonds,

2 2 2 22a(6 2Y) d , the B-terms among the second-shell bonds, 2 a 6 d , the B-terms

between the second-shell and third-shell bonds: (9/2)862d2 + B(6+2y) 2d2 , the

a-terms from the third-shell bonds, 8aY d2 , the B-terms among the third-

2 2shell bonds, 4BY d , and the B-terms between the third and fourth-shell

2d2
bonds 60Y d . Thus, the excess energy (in this case 1/4 times the strain

energy) becomes

AE [!a(6-6 2~ 1 8(6-6)21 B(+)2

2 1 0 4 1I0

1~~Y 2~ 13 2~ 1 2+ a(6+2Y)2+ 3 + 4B(6+2Y)

2+5 2 2 (20)+2ay + BY ]Id-'

16
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The minimization of AE w.r.t 6 and Y leads Eq.(20) to Y - -6/4, and

6 60 0/[1+(+17B/2)/(6a +81 )]. 
(21)

We note that there is some ambiguity in the third contribution listed

above for the B-terms between the impurity and host bonds. The value of B

could be chosen as one of these combinations $,B1, 1/2 (6+6 ) IBB or other

proper combinations. Because the values of a and B1 are comparable and B

values are much smaller than a (see Table 1), the results for 6 and AE are

not too sensitive to the choice. There is also some ambiguity in the values

-(0) - (0) 2for d i . d for the "undistorted" crystal. The -d /3 used is the (
simplest choice. A different choice will not affect the results for 6 at

all, but will make AE slightly different. In fact, Model A was firstly used

3by Martins and Zunger. However, their expression for 6 is different from

Eq.(21), because they made different choices of the two quantities Just

mentioned. Nevertheless, Section IV will show that these two expressions

yield very similar results. These ambiguities do not occur in the full

theory in Section III, where the impurity-host interactions are taken into

account naturally by the replacement energy AR [see Eq.(10)].

Model B: Second-Shell Atoms Connect to a Fixed Boundary

This model corresponds to Y = 0 in Model A. So we have

E a (6o) 2+1(6 )21 219 2 2 (22)

17
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and

6 6 0 /Cl+(a+198/'4)/(ci+,f0 1 . (23)

This expression will be used to study the effect of truncation.

Model C: Simple Spring Model

If all the B's in Eqs.C22) and (23) are set equal to zero, we have the

simple spring model with

AE~. a (6-6 )1a6 ]d (4
2 1 0 2 2 (4

and

6 6 6/(1+1 a/a. (25)

18
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The spring model recently discussed by Shih et al. corresponds to

Eq.(25) with a =I' so 6/60 = 3/4.

Model D. VFF With the Continuum Connected to tn;' Second-Shell Atoms

Model D1

In this case, AE only contains the first five contributions listed for

Case A plus the elastic energy in the continuum. However, the $-terms

between the second- and third-shell bonds are modified because atoms outside

R in the continuum now have radial displacements proportional to the inverse

of the square of the radius. The result is ( ..

2 1 (_) 2 +1 (6+2) 2 1

E [i(6-6o  + 6I8  ) 2Y '-(6+y)
1 2 I 2 1 2 2 (

+j 62 1 (36+X lY ) 2+_1 6 + 2 Y -CdY2 ]d 2, (26)

where A, and A2 are the same as the constants that appear in Eq.(16). The

corresponding equilibrium condition can be shown to be

6 6 /(1+[a(1-2Q)+198/4-5(1+3 1I+X2 /)Q]/(3aI+BI/2), (27)

19
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where

1212 (

Q = (2a+ 8+3X18 /4+A2 /2)/(4k+2Cd/3V-3+8+-Al1+( 28)

Model D2

A comparison between Eq.(26) and the full perturbation (FPT) theory

Eq.(16) shows two major differences. First, all the chemical terms are

absent in Eq.(26). Secondly, the terms (1/2)8i(6-6) 2d 2+(1/4) 8 62d
2 in

2 2 2 2
Eq.(16) become (1/4) a (6 -6o ) d + (1/2) a 6 d in Eq.(26). This difference

in the strain energy will mask the true effects of chemical forces if 6 from

Eq.(26) is compared with FPT. A better way to study the chemical effects is

to use the following equation:

2 1 2 1 21 21

_18616 (6-6o) 2 a(6+2Y) 2 s(6Y)2 Y) d

1 2

which is Eq.(16) with all the chemical terms neglected. The corresponding 6

becomes

17 3 1 (3

with Q still given by Eq.(28). 20

20
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Model E: Continuum Connected to the First-Shell Atoms

In this case Y - -3 Y13 61(8r2) and AE only includes the first three

contributions listed in Model A plus the strain energy of the continuum:

E 3 ( ) 2 1 )2+i1 3r 2 2

AE-21(60) +-8I(6-6o 2V 8712)

+ .1Cd6 2Jd 2  (31)

The relaxation parameter is given by(

6 - / 11+[2- Cd+(1-7) 8/(3aI4+:F8Il. (32)

We note that the continuum model used to estimate the bond-length relaxation

by Baldereschi and Hoffield 9 corresponds to Eq.C32) without the a terms,

which yields 6/60 0.41 to 0.5, rather than the proper values around 0.7 to

0.8.

21
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( V. ALLOY MIXING ENTHALPY

The impurity substitution excess energies AE provide a first estimate -

of the mixing enthalpies of pseudo-binary alloys. Most current

thermodynamics theories of semiconductor alloys are based on an extension of

the binary solution model1 2 In this model, the mixing Helmholtz energy of

an A B C alloy is defined as

AFM F -(x y (33)
m .Falloy XFAC+YFBC)'

where y 1 1-x, and F and F are the respective free energies of the pure
AC BC

AC and BC compounds at the same temperature. Because the C atoms occupy a

( sublattice, the nearest neighbors of A and B atoms in the alloy are the C

atoms. Thus the pair potentials that enter the binary solution theory are

now the second-neighbor interactions. Let NAA , NAB, and NBB be respectively

the numbers of the second-neighbor AA, AB, and BB pairs, with corresponding

pair interaction energies, cAA' CAB' and EBB For tetrahedral

semiconductors, there are a total of 6N second-neighbor pairs for a crystal

containing N unit cells. Denote the ratios N N and N to 6N arAA, .-

rAB - r, and rBB respectively. Then those ratios are related to the alloy

composition by rAA - x-r/2 and rBB - y-r/2. The mixing free energy has two

terms

AF = AE -TAS,
M m

22
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where the mixing energy is given by

AEm - Ealloy-(XEAC+YEBc)

S
6N( CAArAA+CABrAB+ BBrBB )-6N(XcAA+ YBB)

- 6NrAc, (35)

where

A - EAB- (CAA +BB (36)

The mixing entropy AS can also be written from a simple generalization of

the random distribution.12  For modest pressure, AE is the same as the

mixing enthalpy AH
m

Now the pair interaction energies can be approximately related to the

impurity substitution energies by

A (A in BC) 1 12 (AB-eBB), (37).

and

As(A in BC) 12 (cAB-CAA). (38) ,

23
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( Thus Ac of Eq.(36) becomes

= [A(A in BC)+A (B in AC)]

I (39)

= [E(A in BC)+AE(B in AC)]. (39

Usually, the experimental AH is written as
m

AHm x(1-x), (40)

which is equivalent to assuming a random distribution, i.e. r = 2x(l-x)

Using this expression for r and comparing Eq.(40) and (35), we see that the

mixing enthalpy parameter C is given by

- 2[AE(A in BC) + AE(B in AC)]. (41) .<.

This connection provides a further check of the theory.

24
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VI. NUMERICAL RESULTS AND DISCUSSION -

A. Chemical Terms

Table 2 lists 6 = 1-d /d, 6 = 1-dl/d, the excess energy (per

bond) AE for the full theory and its corresponding VFF Model D2, anc the

terms derived from the metallization energies: 6' (Eq.(19), FCh, H, AE

and AEch (Eq.(17)]. The appropriate derivatives f, g, h, .... [see

Eq.(9)] are computed using the atomic term values that we have generated

form impurity-level13 and structural studies.5

For substitutions involving the cation pair (Ga, Al), FCh has the same

sign as 60, which means that FCh prevents relaxation and thus tends to

increase the strain energy. The chemical forces H are also significant. As

a result, all six cases involving this pair have nearly equal d and d
1 d 2,

i.e. the small bond length differences are made even smaller in the alloy.

The excess energies all become negative, mainly because AE is negative.
p

For the systems involving the (Ga, In) and (In, Al) pairs, F has the
Ch

opposite sign from 6 o so 6o and 6 have the same sign. The chemical force
0 0 0

favors bond distortion. However, because H is positive and it introduces an

increase in the denominator of Eq.(18), most of the effect of 6' is

cancelled. For cases involving (Ga, In), the polarity contributions AE are
p

2.
all negative. The FchAd term is negative, but HAd is positive, so they

cancel to a certain degree and leave AE lowered primarily because of AE
p

While, AE is still negative for the (In,Al) substitutions, its magnitude is
p

2reduced considerably. The other chemical energies FchAd + HAd can be as

25
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Table 2. Comparison between the full theory and the corresponding VFF Model D2
to study the effects of chemical terms. All AE's are in units of
kcal/mol-band.

Model D2 Full Theory
Host S 6 AE ' 6 Fch(10-OIUN) H(N/m) AEp AEch -AE

AlP 0.003 0.002 0.001 -0.001 0.001 0.150 4.581 -0.016 -0.016 -0.013
I GaP -0.003 -0.002 0.001 0.001 -0.001 -0.150 4.581 -0.016 -0.016 -0.013 '
;A AlAs 0.001 0.001 0.000 -0.002 -0.001 0.243 5.733 -0.020 -0.021 -0.018
Al GaAs -0.001 -0.001 0.000 0.002 0.001 -0.243 5.733 -0.020 -0.021 -0.018 '

Ga A1Sb 0.006 0.004 0.005 -0.004 0.001 0.389 5.632 -0.054 -0.053 -0.039
Al GaSb -0.006 -0.004 0.005 0.004 -0.001 -0.389 5.632 -0.054 -0.053 -0.039
In GAP -0.077 -0.052 0.959 -0.006 -0.054 0.699 3.778 -0.188 -0.219 0.742
Ga InP 0.071 0.056 0.734 0.005 0.057 -0.699 3.778 -0.188 -0.206 0.530
In GaAs -0.071 -0.048 0.752 -0.009 -0.050 0.804 4.778 -0.257 -0.283 0.472
Ga InAs 0.066 0.052 0.592 0.007 0.054 -0.804 4.778 -0.257 -0.265 0.330
In GaSb -0.062 -0.043 0.554 -0.004 -0.042 0.352 5.201 -0.363 -0.308 0.247
Ga InSb 0.059 0.046 0.445 0.004 0.044 -0.352 5.201 -0.363 -0.287 0.160
In AlP -0.074 -0.053 0.761 -0.007 -0.056 0.769 3.506 -0.035 -0.087 0.679
Al InP 0.068 0.053 0.674 0.006 0.056 -0.769 3.506 -0.035 -0.083 0.596
In AlAs -0.070 -0.048 0.705 -0.010 -0.051 0.942 4.437 -0.048 -0.111 0.602
Al InAs 0.065 0.052 0.576 0.008 0.054 -0.942 4.437 -0.048 -0.099 0.485
In AlSb -0.056 -0.039 0.440 -0.008 -0.041 0.689 4.979 -0.061 -0.073 0.369
Al InSb 0.053 0.042 0.368 0.007 0.044 -0.689 4.979 -0.061 -0.061 0.310

- Cd ZnTe -0.064 -0.048 0.432 -0.003 -0.050 0.202 -0.484 -0.005 -0.064 0.373
Zn CdTe 0.060 0.050 0.314 0.002 -0.053 -0.202 -0.484 -0.005 -0.072 0.247
Hg CdTe 0.003 0.002 0.001 0.004 0.005 -0.278 -0.753 -0.018 -0.026 -0.018

. Cd HgTe -0.003 -0.002 0.001 -0.004 -0,005 0.278 -0.753 -0.018 -0.026 -0.018
Hg ZnTe -0.061 -0.045 0.392 -0.001 0.046 0.075 0.002 0.052 0.037 0.429
Zn HgTe 0.058 0.048 0.286 0.001 0.049 -0.075 0.002 0.052 0.035 0.322
As AlP -0.03 -0.026 0.179 0.001 -0.025 -0.085 0.717 -0.005 0.008 0.187
P AlAs 0.034 0.025 0.185 -0.001 0.025 0.085 0.717 -0.005 0.008 0.194
As GAP -0.037 -0.025 0.226 0.002 -0.024 -0.181 1.078 -0.011 0.012 0.240
P GaAs 0.036 0.027 0.211 -0.001 0.025 0.181 1.078 -0.011 0.014 0.228
As InP -0.032 -0.023 0.136 0.001 -0.022 -0.057 0.919 -0.003 0.008 0.144

P InAs 0.031 0.024 0.128 -0.001 0.024 0,057 0.919 -0.003 0.009 0.138
Sb AlAs -0.084 -0.058 1.024 0.008 -0.051 -0.815 0.644 -0.180 0.002 1.060

" As AISb 0.077 0.059 0.919 -0.007 0.053 0.815 0.644 -0.180 0.027 0.984
Sb GaAs -0.078 -0.052 0.908 0.018 -0.040 -1.599 0.927 -0.363 -0.106 0.929
As GaSb 0.073 0.055 0.823 -0.014 0.044 1.599 0.927 -0.363 -0.061 0.904
Sb InAs -0.070 -0.051 0.603 0.010 -0.042 -0.824 0.855 0.171 -0.009 0.645
As InSs 0.065 0.051 0.551 -0.009 0.044 0.824 0.855 -0.171 0.008 0.613
Sb AlP -'j.122 -0.085 2.007 0.010 -0.077 -0.944 0.645 0.241 0.074 2.127
P A1Sb 0.109 0.085 1.855 -0.008 0.078 0.944 0.645 -0.241 0.123 2.030
Sb GAP -0.119 -0.075 2.132 0.021 -0.061 -1.868 0.930 -0.505 -0.046 2.244
P GaSb 0.106 0.083 1.806 -0.015 0.070 1.868 0.930 -0.505 0.093 2.084
Sb InP -0.104 -0.072 1.383 0.011 -0.063 -0.922 0.854 -0.214 0.059 1.501
P InSb 0.094 0.077 1.191 -0.008 0.069 0.922 0.854 -0.214 0.123 1.379

Se ZnS -0.048 -0.036 0.231 -0.001 -0.036 0.077 0.645 0.003 0.000 0.231
S ZnSe 0.046 0.037 0.221 0.001 0.037 -0.077 0.645 0.003 0.001 0.222
Te ZnSe -0.075 -0.056 0.550 0.000 -0.056 0.028 0.635 0.006 0.024 0.574

Se ZnTe 0.069 0.054 0.532 0.000 0.054 -0.028 0.635 0.008 0.025 0.557
Te ZnS -0.126 -0.092 1.565 -0.001 -0.092 0.101 0.644 ' 022 0.041 1.606
S ZnTe 0.112 0.091 1.446 0.001 0.091 -0.101 0.644 0.022 0.051 1.496
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large as AE P But the overall reductions of AE are only a fraction of those

for the (Ga, In) cases. For the several II-VI systems studied, both F and
Ch

Hare small, and the net changes in 6 have the same sign as 6 0. However,

because 6 0 is small in the (Cd, Hg) substitutions, F Chactually causes a

reversal in which the short bond length gets shorter and the longer one gets

longer. This is the only exceptional case of this type found for all the

systems studied. The change of AE due to chemical terms in the (Hg, Zn)

substitution is also peculiar--it increases mainly because AE is positive. I
p

Next examine the anion substitutions. For the groups involving the (P,

As) pair, the chemical shifts are all small, but the trend is less toward

relaxation and larger AE. The groups involving (As, Sb) and (P, Sb) pairs

behave very similarly: F Chare significant and are opposing relaxations,

i.e. 6' and 6 have opposite signs. At the same time, the H values are( .
0 0

several times smaller than those for the corresponding III-V cation

substitution case. Thus, most of d'translates into a real reduction of

the ratio 6/6 0 , and consequently introduces extra strain energy. Although

the AE energies are significant and negative, F A~d are positive, and the
p C

net AE Ch can be either poslt. ve or negative. However, the induced strain

I..-- -

energy due to reduction of the 616 makes all AE positive for these two

groups of systems. For I t-VI systems, all the chemical effects again are

small, but the net chemical changes on AE are slightly positive.

I.

The above discussion can be summarized in Figure 2, where the excess

energies AE calculated from the full perturbation theory (FPT) and Model D2

are plotted normalized to the results of the simple spring model (SSHS) ,of

Shih et al. i.e. Eq.(24) with are a so aE/(3/8 td 2) t 0 2 The calculated
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AE rises faster for 6 0 o than for 6 0 o , mainly because ct/ai 1. In fact

ifterlto 7 '1 (rc~ d /d) S with S of order of 3 to 5 is used in;F 0
I I

Eq.(24), we obtain a percentage correction of S6 AL to the SSHS results,
0

which explains the skewed behavior of the curve. It is also clear that AE

rises faster than 6 02 for larger 6 0.However, the zeroth order theory of

SSHS is clearly an excellent representation of the global features of AE.

The results from Model D2 are closer to the parobolic form than those from

FPT. The figure clearly shows the general trends; the chemical terms cause.7

negative shifts in AE for cation substitutions and positive shifts for anion

impurities. It is also clear that the chemical shifts can be very large.

These effects will have important consequences on the alloy mixing

enthalpies to be discussed later.

B. Impurity Bond Length

Table 3 lists the impurity bond lengths d calculated from

different models, while a comparison of theory and the available

experimental datal~~l is presented in Table 4. The actual size of

changes in d induced by the chemical terms can be seen by comparing Model

D2 with the full theory. Except for the systems involving the substitution

of (Ga,As) and (P,Sb) pairs (where changes range from 0.01 to 0.03A), all

the chemically induced changes are less than 0.01 A. Comparison among

Models A, B, and C shows that, while extending the boundary helps the

relaxation (compare Model B to A), i.e. 6/6 is closer to 1, the inclusion
0

of the bond-bending forces (the a terms) (compare Model B with C) prevents

it. The simple spring model (Model C) which contains neither of these
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Table 3. Calculated impurity local bond lengths (in A) from the full theory

and several valence force models discussed in Section III and
their comparison with the values calculated by Martins and
Zunger (Ref. 3)

A B C Dl D2 E FPT MZ

Ga AlP 2.362 2.363 2.362 2.362 2.362 2.364 2.364
Al GaP 2.365 2.364 2.365 2.365 2.365 2.365 2.363
Ga AlAs 2.449 2.449 2.449 2.449 2.449 2.450 2.452

Al GaAs 2.450 2.450 2.450 2.450 2.450 2.450 2.447
Ga AlSb 2.645 2.646 2.644 2.645 2.644 2.649 2.653
Al GaSb 2.651 2.650 2.652 2.652 2.652 2.650 2.644
In GAP 2.477 2.462 2.492 2.479 2.483 2.435 2.487 2.474
Ga InP 2.406 2.421 2.402 2.395 2.399 2.409 2.396 2.409
In GaAs 2.559 2.544 2.573 2.561 2.565 2.518 2.570 2.556
Ga InAs 2.492 2.506 2.486 2.482 2.485 2.496 2.481 2.495
In GaSb 2.747 2.734 2.760 2.749 2.754 2.710 2.750 2.739
Ga InSb 2.683 2.697 2.678 2.673 2.676 2.686 2.680 2.683
In AlP 2.487 2.472 2.494 2.490 2.493 2.447 2.498 2.480
Al InP 2.412 2.427 2.408 2.401 2.405 2.415 2.400 2.414
In AlAs 2.561 2.546 2.572 2.563 2.568 2.523 2.575 2.553
Al InAs 2.493 2.506 2.487 2.483 2.487 2.497 2.480 2.495
In AlSb 2.754 2.741 2.763 2.756 2.760 2.721 2.765 2.746
Al InSb 2.693 2.705 2.689 2.685 2.687 2.696 2.683 2.693
Cd ZnTe 2.756 2.740 2.760 2.760 2.763 2.720 2.770 2.755
Zn CdTe 2.673 2.688 2.676 2.660 2.665 2.671 2.658 2.674
Hg CdTe 2.800 2.801 2.800 2.800 2.799 2.801 2.790
Cd HgTe 2.804 2.803 2.804 2.805 2.805 2.804 2.813
Hg ZnTe 2.750 2.735 2.754 2.753 2.757 2.715 2.758 2.748 4

Zn HgTe 2.671 2.685 2.674 2.659 2.664 2.671 2.662 2.673
As AlP 2.425 2.418 2.429 2.427 2.428 2.406 2.427 2.422
P AlAs 2.392 2.399 2.387 2.387 2.389 2.394 2.390 2.395
As GAP 2.417 2.409 2.424 2.417 2.420 2.396 2.416 2.414
P GaAs 2.386 2.393 2.380 2.382 2.383 2.389 2.386 2.387
As InP 2.596 2.589 2.599 2.598 2.600 2.579 2.598 2.595
P InAs 2.561 2.568 2.558 2.557 2.558 2.563 2.560 2.562
Sb AlAs 2.584 2.566 2.597 2.587 2.592 2.539 2.577 2.574
As AlSb 2.506 2.522 2.496 2.495 2.498 2.511 2.514 2.510
Sb GaAs 2.569 2.553 2.584 2.571 2.576 2.524 2.546 2.564
As GaSb 2.501 2.516 2.489 2.492 2.495 2.508 2.525 2.505
Sb InAs 2.747 2.730 2.754 2.750 2.754 2.705 2.733 2.739
As InSb 2.669 2.683 2.663 2.658 2.662 2.672 2.683 2.667
Sb AlP 2.555 2.529 2.569 2.561 2.568 2.488 2.550 2.542
P AlSb 2.440 2.462 2.426 2.425 2.430 2.447 2.448 2.444
Sb GAP 2.526 2.503 2.551 2.529 2.537 2.461 2.504 2.519
P GaSb 2.431 2.451 2.414 2.418 2.422 2.440 2.454 2.436
Sb InP 2.712 2.687 2.720 2.719 2.725 2.654 2.702 2.700
P InSb 2.599 2.619 2.591 2.585 2.590 2.604 2.611 2.597
Se ZnS 2.420 2.409 2.421 2.424 2.426 2.396 2.426 2.420
S ZnSe 2.367 2.376 2.365 2.360 2.364 2.370 2.363 2.367

Te ZnSe 2.586 2.569 2.588 2.589 2.592 2.540 2.591 2.584
Se ZnTe 2.501 2.517 2.497 2.490 2.494 2.504 2.495 2.502
Te ZnS 2.543 2.513 2.544 2.552 2.558 2.478 2.557 2.539

S ZnTe 2.406 2.429 2.400 2.390 2.396 2.410 2.396 2.407
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( terms, evidently represents a delicate cancellation of these effects and

predicts results close to those of the full perturbation theory and

experiment. Although the dvalues of Model C are often very close to those
* a,1

*of Model A, there are cases [e.g., Ga(P, Sb)) in which Model C can differ

from Model A by 0.025 A. Model A produces about the same d values as Model

3
D1, where the maximum difference in d1 is only 0.015 A. Martins and Zunger

used the same model as Model A, however, their analytic expression for 6 is

different from that given by Eq.(21). Nevertheless numerical results

indicate these two calculations agree to 0.01 A. The slightly different

forms of strain energies used in Model D2 and D1 only introduce a small

change in d1 with the largest difference being less than 0.01 A. The first-

shell continuum model (Model E) allows too little relaxation, so while the

other models produce a ratio 6/6 0ranging from 0.6 to 0.8, Model E only

( ranges from 0.14 to 0.6. The reason that the fixed boundary in Model A works

is that the effective shear coefficient C (see Table 1) characterizing the

strain energy in the elastic continuum is large. However, Model 3 is too

rigid, and does not provide enough buffer between the impurity bond and the

fixed boundary.

The comparison of the theoretical results with the available

experimental data in Table 14 indicates that Models B and E are the least

accurate. Models A, D1, MZ and the full theory are comparable in that all

have an average absolute deviation of 0.012 'which is about the

experimental uncertainty in EXAFS. The agreement between theory and

experiment, however, is not uniform. The most surprising result in Table 14

is that the simple spring model, Model C, and Its cruder version used by

8
Shih et al. (a a s0 6/60 -0.75, labeled as SSHS) has the smallest

II
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variance in di, about 0.006 A. We know this does not imply that the simple

spring model represents the real picture of bond-length relaxation. Nature

is just playing tricks on us again. For example, if we let all the shear

coefficients be zero, i.e., 8 = C = 0 in our model, then as the range of the

boundary is gradually extended, the local bond length will eventually relax

to the impurity bond length d1 = di , or 6 
= 6o This can be seen in Model A

from Eq. (21), where 6 reduces to 6 0/(I+a/6ai), rather than 60/(I+a/3a1 ) as

predicted by Model C, and in Model D from Eqs.(27) and (30), 6 becomes 6Of

if the continuum is taken to be shearless. Considering that various effects Z.

are included that may mask the absolute accuracy of dI predictions (e.g.

while low-temperature bond lengths are used in the calculation, the room-

temperature values of elastic constants are adopted), the agreement of

various models with experiments in Table 4 should be regarded as excellent.

There are, however, many other impurity systems in which the simple spring -

model predictions differ considerably from other models, as is shown in

Figure 3, where 6 is plotted against 6 for the full theory. Those points
0

that deviate significantly from the 0.75-slope line are the systems with

(As, Sb) or (P, Sb) substitutions. Additional EXFAS measurements on these

systems are needed to test these predictions.

C. Mixing Enthalpies

Table 5 lists the mixing enthalpy parameters fl (in kcal/mole) for

a number of alloys estimated from Eq.(41) for all the models considered

along with other theoretical3 '16 18 and experimental values. As already

discussed, the chemical terms reduce the excess energies in the cation

33
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Table 5. Mixing enthalpy parameter 2 (in kcal/mole) estimated from the full
perturbation theory (FPT) and several valence force models discussed

in Section III and comparison with experiments and other theories.

A B C Dl D2 E FPT MZ a DLb FMc N d Expe .Ii

(Ga,A1)P 0.00 0.01 0.00 0.01 0.01 0.01 -0.05

(Ga,A1)As 0.00 0.00 0.00 0.00 0.00 0.00 -0.07 0.02 0.02 0.03 0.11 0.0
(Ga,A1)Sb 0.02 0.03 0.02 0.02 0.02 0.03 -0.15 0.02 0.02 0.03 0.0

(Ga,In)P 3.76 4.79 3.0. 3.29 3.39 5.24 2.54 4.56 3.63 2.94 3.25

3.5
(Ga,In)As 2.97 3.76 2.36 2.61 2.69 4.14 1.60 2.49 2.81 2.42 1.25 1.65

2.0
3.0

(Ga,In)Sb 2.22 2.83 1.77 1.95 2.00 3.09 0.81 2.53 1.85 1.83 1.47

1.9
(In,AI)P 3.24 4.22 2.77 2.78 2.87 4.60 2.55
(In,A1)As 2.86 3.65 2.32 2.49 2.56 3.93 2.17 3.60 2.81 2.37 2.5
(In,Al)Sb 1.81 2.33 1.49 1.57 1.61 2.50 1.36 2.06 1.46 1.45 0.6
(Cd,Zn)Te 1.80 2.43 1.73 1.43 1.49 2.45 1.24 2.12 1.97 1.63 1.34
(Hg,Cd)Te 0.00 0.00 0.00 0.00 0.00 0.00 -0.07 0.7

1.4
(Hg,Zn)Te 1.63 2.20 1.56 1.30 1.36 2.23 1.50 1.91 1.81 1.48 3.0
Al(P,As) 0.81 1.03 0.65 0.71 0.73 1.14 0.76
Ga(P,As) 0.95 1.18 0.70 0.86 0.87 1.32 0.94 1.15 0.98 0.66 0.12 0.4

1.0
In(P,As) 0.60 0.78 0.52 0.51 0.53 0.84 0.57 0.72 0.58 0.52 0.4

AI(As,Sb) 4.31 5.45 3.38 3.80 3.88 5.92 4.09
Ga(As,Sb) 3.77 4.69 2.81 3.40 3.46 5.22 3.67 4.58 3.35 2.76 4.0

4.5
In(As,Sb) 2.61 3.39 2.23 2.24 2.31 3.67 2.52 2.89 2.29 2.17 6.65 2.25

2.9

Al(P,Sb) 8.60 10.99 6.99 7.54 7.73 12.00 8.32
Ga(P,Sb) 8.54 10.61 6.36 7.72 7.88 11.66 8.66
In(P,Sb) 5.87 7.64 5.08 4.99 5.15 8.04 5.76

Zn(S,Se) 1.04 1.39 0.98 0.85 0.90 1.49 0.90
Zn(S,Se) 1.04 1.39 0.98 0.85 0.90 1.49 0.90
Zn(Se,Te) 2.47 3.27 2.23 2.09 2.16 3.63 2.26 2.91 3.11 2.12 3.12 1.55
Zn(S,Te) 7.02 9.34 6.45 5.80 6.02 9.72 6.20

a
Ref. 3. Col. A of Table II.

bRef. 16

CRef. 13

_ •. 1 .

Re. 1, and 1"""
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impurities and increase them for anion impurities. The corresponding

changes in fl are the differences between the FPT and Model D2. We note that

the reductions of Q for the (Ga, In) alloys are very large (> 1 kcal/mole) .-

and also significant for (In, Al) alloys. However, the increases in a for

the anion substitutional alloys are not as large. Also the fl differences

between Models D1 and D2 are less than 10 percent. Model A produces fl

values about 20 percent larger than Model D1; Model B in turn is 20 percent

higher than Model A; and Model E is 10 percent higher than Model B. The al

values in the simple spring model, Model C, are seen to be about the same as

Model D1, although the differences among systems can be positive or

negative. Although MZ used the same strain model as Model A, their 02 values

do not agree with our Model A values because their way of estimating 0 is

different. In fact, MZ's values are closer to Model B than A.

To distinguish the quantitative nature of different theoretical models,

we note that there are also important factors that may mask the comparison

between theory and experiment for a. One important factor is that the

mixing enthalpies extracted from phase diagram analysis are sensitive to

sample and experimental conditions. These AH m contain contributions from

various nonideal structures such as vacancies, impurities, dislocations,

grain boundaries, and surface conditions, in addition to the ideal AHm

considered here for solid solutions. Thus, our theoretical AH shouldn

represent a lower bound. Another complication comes from the version of the

theory of solid solution adopted. The theory used for analysis so far

assumes a regular solid solution with second-neighbor pair interactions as

and2 thoe 23
was outlined in Section V. Recent experimental 20-2 thoeical

36
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studies have suggested the possibility of compositional clustering or long-(

range correlations in alloys. Extending the theory to include such effects

will alter the simple results for AH from Eq.C1[1). Moreover, there is
m

evidence from the composition variation of the alloy hardness and from the

25
optical phonon frequencies that the shear coefficients of alloys increase

near the center of the composition range. This will cause the effective

continuum shear coefficient C in Eq.(1LI) to be composition dependent, which

will cause a to increase. Despite these uncertainties, useful comparisons

across the board in Table 5 can still be made.

Based on the above considerations, we can conclude that Models B, E,

and MZ predict n values that are too high. We should emphasize that all the

0 numbers for models from A through MZ are directly calculated without any

adjustable parameters. The fact that Models A, C, and D1, D2, and the FPT(

agree with the experiment as well as or even slightly better than the one-

parameter thois16C1 DL adFM) is already quite an accomplishment. The

few numbers taken from Van Vechtan's calculations 17CVV) indicate that the

dielectric model predicts results at larger varience with experiments.

There are two important implications about the FPT that can be drawn from

Table 3. First, the theory predicts a small but negative Q value for

several alloys. This not only means that there is no miscibility gap in

these alloys but also implies a tendency toward ordering, in which the

substitutional atoms tend to be surrounded by different second-neighbor

species. For stoichiometric compositions, this implies a tendency toward

compound formation. Secondly, the FPT tends to predict smaller fl values

than observed experimentally, which should be expected according to our

discussion. To the extent that the FPT predicts the correct AH values for
m
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expan ideal solution, the difference AH _AH may be attributed to imperfect

conditions and deviations from the ideal solution theory.

Finally, the calculated fl values in Table 5 provide some guidance in

separating the completely miscible alloys from immiscible ones.26 '27 In a

true random alloy, the criteria for alloy mixing at a temperature T is

that T ZTc. where the critical temperature T is given by SQ/(2R ) with R
cc g g

being the universal gas constant. 29  For an A B C alloy to be miscible
x 1-x

throughout the whole concentration range, the requirement is that both the

melting temperatures T and T of the pure AC and BC compounds are greater
1 2

than T . Table 6 lists the values of T associated with the 9 values in the
c c

FPT, the ratios T o/T and Tc/T2, and the average absolute values of 60 for

the alloys considered in Table 5. In Table 6, T is set equal to zero if a
c

( is negative and T2 is chosen to be the lower value of the two melting

temperatures, so the criterion for not having a miscibility gap is Tc/T2
< 1.

26
There is an empirical rule 2 6 stating that this will be satisfied if the

lattice mismatch I6 I between the two alloy components is less than 7.5

percent. However, we find that (see Appendix C) a more precise rule is that

16o 1< 6m, where 6m = 1.63 Xm and Xm is the ratio of the rms bond length

amplitude fluctuation to the bond length at the ,oelting temperature T The

30
values of Tm for the compounds involved and the associate Xm values

estimated from Eqs.(C2) and (C3) are tabulated in Table 1. The model used

2in Appendix C yields T c/T 2  (6o /6 m) This suggests that it is instructive

to plot Tc/T2  as a function of 1601 16m, as is shown in Figure 4 for the

T calculated from FPT. This plot is similar to the AE vs 6 curve in Fig.
c o

2, because, in fact, fl is proportional to the sum of the AE values of the

two constituents [see Eq. (41)]. However, if Tc/T 2 is plotted against 6o0
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Table 6. Comparison of the Critical Temperature Tc of
Mixing and Melting Temperatures of the Constituents T1
and T2, in the Order of Their Appearance in the
Parentheses. Also Tabulated are the Averaged
Absolute Values of 1601 and the Ratio I6o/6m

System 161 (%) Tc ('K) Tc/Ti TC/T 160I/6m P12

(AI,Ga)As 0.1 0 0 0 0.009
(AlGa)P 0.3 0 0 0 0.029

(Ai,Ga)Sb 0.6 0 0 0 0.067
(Al,In)Sb 5.5 342 0.25 0.42 0.679

(Ga,In)Sb 5.8 204 0.21 0.25 0.716

(Al,In)As 6.8 547 0.29 0.45 0.687

(Ga,ln)As 6.9 403 0.23 0.34 0.697 5'

(Al,In)P 7.1 642 0.36 0.48 0.732

(Ga,In)P 7.4 639 0.43 0.48 0.763

In(P,As) 3.2 144 0.11 0.12 0.330

Al(As,P) 3.5 191 0.10 0.11 0.307

Ga(As,P) 3.7 236 0.14 0.15 0.352
In(As,Sb) 6.8 635 0.52 0.79 0.840
Ga(As,Sb) 7.6 924 0.53 0.94 0 844

A1(As,Sb) 8.1 1030 0.56 0.78 0.810

In(P,Sb) 9.9 1450 1.08 1.82 1.222

Ga(P,Sb) 11.3 2180 1.25 2.21 1.256
AI(P,Sb) 11.6 2095 1.19 1.58 1.116

(Cd,Hg)Te 0.3 0 0 0 0.033

(Zn,Hg)Te 6.0 377 0.25 0.40 0.659
(Zn,Cd)Te 6.2 312 0.21 0.23 0.564

Zn(SSe) 4.7 226 0.11 0.13 0.362

Zn(Se,Te) 7.2 569 0.32 0.38 0.615

Zn(S,Te) 11.9 1560 0.74 1.03 1.017
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Fig. 4. Plot of Tc/T 2 as a function 16o/6m for T obtained from
c

(a) FPT, and (b) the experimental Q in Table 5. In (a),

the dots are for anion alloys and crosses for cation

substitution. The solid lines in both parts correspond

to the simple theory discussed in Appendix C. The

dashed lines at Tc/T2 = 0 separate the miscible from

immiscible groups.
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alone, the FPT points are much more scattered, and those of SSHS would not ( ,:

even exhibit a smooth simple quadratic form because the lower melting W

temperature T is not a smooth function of I 6I This result suggests p.:j
20

that 60I1/6m < 1 is a better criterion than I 1< 0.075.

Figure 3 also clearly shows the chemical effects: all the cation-

substitution alloy points lie below the solid curve and all the anion-

substitution alloys have (T /T ) values on or above the curve, corresponding
c 2

to negative and positive shifts in AE due to the chemical terms. Again, the

curve based the SSHS model is an excellent universal representation. From

the figure, we see that all (P,Sb) alloys should have miscibility gaps and

all (As, Sb) alloys are predicted to be miscible, although on the border-

line, because the actual mixing enthalpies are larger than these ideal

calculated values. The figure also shows that Zn(S, Te) has a miscibility

gap but a smaller value of Tc/T 2 than the (P, Sb) alloys, despite the fact (
that its 16 Ivalue is larger. All these predictions are consistent with the

available experimental evidence.

VII. SUMMARY AND CONCLUSION

In this paper, a simple theory of defect substitution energies is

formulated. The substitution energy is compactly separated into a

replacement energy AR and a distortion energy of the pure host crystal [see . -

Eq.(2)]. However, a rigorous application of this theory requires an

improvement in certain quantitative aspects of Harrison's bonding

41
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(theory, 7particularly the elastic constants. 5The most interesting

application of' this theory presented in this paper is its perturbation form

which enables us to absorb the measured elastic coefficients into the

calculation, and more importantly, to study the chemical effects. The

origin of chemical influences on impurity bond relaxation can be attributed

to three mechanisms [see Eq.(17)1: a chemical force F that either helps
Ch

or hinders lattice relaxation, depending on whether it has the same or

opposite sign from the bond length difference d-d I between the host and

impurity, a chemical energy that depends on the difference of the polarities

between the impurity and host bonds, AV, and an effective elastic force

constant H that, when positive, also tends to restrain the lattice from

distortion. To study the effect of boundaries between the core atoms around

an impurity and the rest of the elastic medium, various models based on the

(valence force field 10are derived and their results are compared with the

full perturbation theory and available exerimental data. We found at least.

five models, including the FPT, that produce the correct impurity bond

lengths with variances for the compounds studied about equal to the

experimental uncertainties in EXAFS,~lIC 0.01 A). However, some modeis

are oversimplified and will certainly not predict other properties equally

well. However, more experimental lattice constant measurements, to further

test the theory, particularly on (As, Sb) and (P,Sb) substitution systems

for which there are larger differences between different models, are needed.

It would also be instructive to see if the predicted reversal for HgCdTe is

found.

The excess energies of impurity substitution are also shown to provide

good estimates of the mixing enthalpies Q of pseudo-binary alloys. The
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chemical shifts are found to have a negative net contribution to fl for most -

cation substitutions, but positive contributions for anion substitutions.

The chemical reduction of 9 in (Ga, In) alloys is larger than 1 kcal/mole

(30 percent to 100 percent). Several VFF models and the full perturbation

theory produce results for a that are as good as the best theories with one

adjustable parameter. However, the full theory tends to yield answers on

the low side of the experimental values, which we argue is as it should be,

because there are nonideal structures that also contribute to f0. The

calculated 02 values and the melting temperatures are used to predict the

existance of alloy miscibility gaps, and the results correlate well with

experiments.

Finally, we wish to comment on the accuracy of the theories that are

connected to the present model. The perturbation theory has already been .

stretched beyond its expected region of validity and predicts d to within

experimental uncertainties ( 0.01 A) even for cases with large bond length

differences (6 0.1). The accuracy can only be improved if the full non-

perturbation theory outlined in Section II is used. This calculation is

needed for the strong substitution cases that were not considered in this

paper: examples are (B, Ga), (B, In), (N,P), (N,As), (N,Sb), (0,S), (O,Se)

and (0,Te) substitutions. Although we believe that, for the properties

treated, the model with a continuum attached to the second-shell is as

accurate as the perturbation theory used, it remains to be seen if this is

true for other properties, especially strain coefficients. Finally, the

present theory has been extended to study alloys by embedding clusters in

an effective medium. This enables us to study the bond length and energy

variations throughout the whole concentration range. However, a
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( quantitative calculation still awaits an improvement of the accuracy of

Harrison's theory. A similar precedure is also being extended to a study of

the alloy electronic structure, for which a cluster CPA (coherent-potential

31approximation) involving both potential and structural disorder will be

used.
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* Appendix A

ELASTIC ENERGY IN CONTINUUM

In Section 3, the elastic energy outside a sphere of radius R centered

at the impurity is assumed to be a continuum with a radial displacement

2 +2 2 2ucar/r. If the displacement at R is u 0, then u (r) U 0 CR /r )r. The

energy density in the continuum is given by

=1C e2 2 2
C (e+e+ + C ee+ee+

+ C (exy+e z+e~

* where

x 2 2 u0 r-3x 2)/ 5,

exy ax ax y -R0 xl
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( Thus the total elastic energy in the continuum is

(out) 3
Adis = f e(r) d r

S4iRuR (-C 1-- c12+-c4
o 5 11 5 12 5C 44

= CRu 2
0,

where the effective shear coefficient is given by

'-a

C ir(1.6C 11 -1.6C 12 +4.8C4).

• '°
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Appendix B

DISTORTION ENERGY

In this appendix, we count the detailed contributions of the bond

stretching terms A(r .ri), and "bond bending" terms A (r ir 3) for i~j in VFF

[Eq.(13)] that enter Eq.(16) in FPT and in the VFF Models in Section III. I-
V.j

I>

a and B terms from the first-shell bonds

The four bond vectors pointing away from the central impurity according

to Fig. 1 are r4 1 (1-6,1-6,1-S)d/3. r2  (1-6-1-6,-1-6)d/VT ''" Thus (
44)2 42A(r r'd -26d and A(r .ir' 3-d- . The a-terms contribute 4-3a I2 31

26ai6 2 d2  th -em otiue2 2

(-26d )2/8d2 -6 , and the -terms contribute 6.38(- 6d)2/8d 2

2 2d . If an A atom is replaced by a B atom, as was done In FPT, the aI

and are replaced by a and B respectively.

a-terms from the 2nd-shell bonds, 6-terms between the first- and

second-shell bonds and among the 2nd-shell bonds

For these terms we need to consider the four bond vectors pointing away

from C. They are rI = (-1+6,-1+6,-I+6)d/3, r = (-1+6, 1+6+y, 1+6+y) d//v3,+ "'
r (1 6 Y , -1+6 , 1+ 6 )d/ " . ... Then A (r 2  ) - (6 2y )d2

$3 2' I~U.1-16 22 3
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A(. 2 ) (6+Y)d2  and A(r r -26d Thus the a-terms from the1 3 2 (r"3) 3 %

second-shell bonds become 4.3.3a [2(6+2Y) d2 j2 /8d2 - 2a (6+26) 2d2 , the B-

2 2]2/ 2.term between the first- and second-shell bonds are 4-3.3B [2(6+Y)d 21/8d

2(Y+6) 2d 2 , and the B-terms among the second-shell bonds are 4-3-3B

2 2 2 2 2 2(-6d )2/8d 26 ad

a-terms for the third-shell bonds, 8-terms between the second- and

third-shell bonds and among the third-shell bonds adjacent to the

second-shell atoms

For these terms we need to consider the bond vectors pointing away from

" B in Figure 1. They are r2  (I -1-Y-6,-1-Y-6)d/ ,

(1+y', I+3Y'-Y, 1+=-)/ - K4 7%
' 1+3Y'-Y)d//, r (-1-Y", 1+3Y"-Y, -1+y"-Y)d//r and r

(-1-Y", -1+Y"-Y, 1+3Y" -Y) d//T. Thus we have A (rI r2 ) = - - (36+5Y'),
12 32 _ 2y,, A(,

A rd 2 r (d Y", ) = (-2Y-Y'+ 3Y"),
(2 1= T-(6+2Y-5Y"1, A(i 3.r41 =- 2 A(rl 3 d- "

. 2  . d 2 3"4 .

2 2
A( 3.r3 ) (6"), and A(r1.rI ) = T- (14r'-4y). For Model A, Y' = r" =

0 so the a terms of the third shell bonds become 4.3.3a [2(A+3 . 2 +
2]/82 2 2h

(ArI'-) 8ay 2d? the B terms between the 2nd- and 3rd-shell bonds are

2 2 9
1'4.3.38[(A ri. 2 )2  2(A 'r. 3 r)2]/8d2  2 "d[ _(+Y

86 d +B(6+2Y) d and the 8 terms among the third-shell bonds adjacent to

the second-shell atoms are 4.3.3 222(Ar )2/(8d2)+(A' * )

continuumm and the only contribution from this group are the B terms between

the second- and third-shell bonds. Since the displacements in the continuum
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are proportional to 1/R 2 ,Y' 8/2Y/(19VT9) and y" = 8vIy/(114-). Thus, (
these B terms become

a..

9 d 2d 24  2 40.) 2

(36+5Y') -9 (6+2Y-5Y") 2 ] " B[(36+-T 7 Y). 2d2

'a.-

4 OV' 2 2.+2(6+2Y--,rY) ]d" .-

B terms for bonds adjacent to the third-shell atoms P

These terms only enter Model A, so r' = r" - 0. There are two

different groups, one like those adjacent to C' and another like those

meeting at C". The four bond vectors pointing away from C' are r=
4, .4 -

-1, -1+Y, -1+Y) d/I3, +r2 = (-1,1,1) d//3, r 3 - (1,-1,1) d/VI, and r =

(1,1,-I) d//7. Thus the only contribution from this group is 4-3.3B

82 2 22
[A( r ] /8d 28Y d The four bond vectors around C" are: r

=(-+Y, -1-Y, -1)dI r2 = (-1,1,1)d/VT, r3 = (1,-1+Y, l+Y)d//3, and r -

(1,1,-1)d/Ir, which only results in the first order term A(2 r

2 2 4 2 2 2 2
2 2"Yd Thus the group contributes to 4.3.38[2 (Ar r 2]/8d 4BY d3 2 3

and the combined contribution from these two groups is 68Y d2
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( Appendix C

Starting with Eq.(24) and using the SSHS model a a l, one finds the

mixing enthalpy parameter a to be

3- 2

= (dAC-dBC)2 Nof C-1

where No is Avagadro's number and a = (1/2) (aAC+aBC). Then relate the mean

2
square bond length fluctuation <C > at the melting temperature T to T for am m 1.]

compound by equating the average potential energy per unit cell to half of

(the thermal energy:

<P.(.> 2- > - 3kTm) C-2

where k is the Boltzmann constant. Defining a Liedermann ratio of melting

Xm by

2 112
(< >) Xmd C3
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and choosin the mixingcriterion to be T /T < 1, where Tnwi h
c m %

smaller value of the two melting temperatures of' the constituent compounds,

we require that

T nk3 (d ACdBC) 2 <1C-4

T 2 2 8 2 2

iJRm Xm

or

Is / <1,c-5

where 6~m =1.63 Xm and 161is the percentage bond length difference.
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